ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the CEMP-no Group Morphology in the Milky Way

127   0   0.0 ( 0 )
 نشر من قبل Jinmi Yoon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elemental-abundance signatures of the very first stars are imprinted on the atmospheres of CEMP-no stars, as various evidence suggests they are bona-fide second-generation stars. It has recently been recognized that the CEMP-no stars can be sub-divided into at least two groups, based on their distinct morphology in the $A$(C)-[Fe/H] space, indicating the likely existence of multiple pathways for their formation. In this work, we compare the halo CEMP-no group morphology with that of stars found in satellite dwarf galaxies of the Milky Way -- a very similar $A$(C)-[Fe/H] pattern is found, providing clear evidence that halo CEMP-no stars were indeed accreted from their host mini-halos, similar in nature to those that formed in presently observed ultra-faint dwarfs (UFDs) and dwarf spheroidal (dSph) galaxies. We also infer that the previously noted anomalous CEMP-no halo stars (with high $A$(C) and low [Ba/Fe] ratios) that otherwise would be associated with Group I may have the same origin as the Group III CEMP-no halo stars, by analogy with the location of several Group III CEMP-no stars in the UFDs and dSphs and their distinct separation from that of the CEMP-$s$ stars in the $A$(Ba)-$A$(C) space. Interestingly, CEMP-no stars associated with UFDs include both Group II and Group III stars, while the more massive dSphs appear to have only Group II stars. We conclude that understanding the origin of the CEMP-no halo stars requires knowledge of the masses of their parent mini-halos, which is related to the amount of carbon dilution prior to star formation, in addition to the nature of their nucleosynthetic origin.



قيم البحث

اقرأ أيضاً

We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contai ns a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-$s$ and CEMP-no sub-classes. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two sub-classes for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-$s$ stars than CEMP-no stars (57% vs. 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-$s$ stars (70% vs. 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.
We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of prope r motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72$+$015549.6 at $274 pm 74$ kpc and ULAS J074417.48$+$253233.0 at 238 $pm$ 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0 are both moving away from the Galactic center at $52 pm 10$ km s$^{-1}$ and $24 pm 10$ km s$^{-1}$, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MWs disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxys outer halo.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated mol ecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
We present an open-access database which includes a synthetic catalog of black holes in the Milky Way. To calculate evolution of single and binary stars we used updated population synthesis code StarTrack. We applied a new model of star formation his tory and chemical evolution of Galactic disk, bulge and halo synthesized from observational and theoretical data. We find that at the current moment Milky Way (disk+bulge+halo) contains about 1.2 x 10^8 single black holes with average mass of about 14 Msun and 9.3 x 10^6 BHs in binary systems with average mass of 19 Msun. We present basic statistical properties of BH populations such as distributions of single and binary BH masses, velocities, orbital parameters or numbers of BH binary systems in different evolutionary configurations. We find that the most massive BHs are formed in mergers of binary systems, such as BH-MS, BH+He, BH-BH. The metallicity of stellar population has a significant impact on the final BH mass due to the stellar winds. Therefore the most massive single BH in our simulation, 113 Msun, originates from a merger of a helium star and a black hole in a low metallicity stellar environment in Galactic halo. The most massive BH in binary system is 60 Msun and was also formed in Galactic halo. We constrain that only 0.006% of total Galactic halo mass (including dark matter) could be hidden in the form of stellar origin BHs which are not detectable by current observational surveys. Galactic binary BHs are minority (10% of all Galactic BHs) and most of them are in BH-BH systems. The current Galactic merger rates for two considered common envelope models which are: 3-81 Myr^-1 for BH-BH, 1-9 Myr^-1, for BH-NS and 14-59 Myr^-1 for NS-NS systems. Data files are available at https://bhc.syntheticuniverse.org/.
59 - G. Cescutti , P. Molaro , X. Fu 2020
Recently, we studied the chemical evolution of lithium in the thin disc of the Milky Way. We found that the best agreement with the observed Li abundances in the thin disc is obtained considering novae as the main source of lithium. We assumed a dela y time of ~1 Gyr for nova production and an effective 7Li yield of 1.8($pm$0.6)x10$^{-5}$ Msun over the whole nova lifetime. The possibility to check our detailed assumptions on lithium production on other stellar systems, such as the satellites of our Milky Way, is seriously hampered by their distance from us. In these systems dwarf stars (where the original lithium can be measured) are too faint to detect lithium lines. However, thanks to the Gaia mission, it was recently possible to disentangle the stars of a disrupted dwarf galaxy in the Galactic halo (called Enceladus or Galactic sausage). Adopting a chemical evolution model tuned to match the metallicity distribution function of Enceladus stars, we present our predictions for the lithium abundance of the stars of this disrupted galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا