ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of galactic planes of satellites in the EAGLE simulation

77   0   0.0 ( 0 )
 نشر من قبل Shi Shao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of planes of dwarf galaxies around Milky Way (MW)-mass haloes in the EAGLE galaxy formation simulation. We focus on satellite systems similar to the one in the MW: spatially thin or with a large fraction of members orbiting in the same plane. To characterise the latter, we introduce a robust method to identify the subsets of satellites that have the most co-planar orbits. Out of the 11 MW classical dwarf satellites, 8 have highly clustered orbital planes whose poles are contained within a $22^circ$ opening angle centred around $(l,b)=(182^circ,-2^circ)$. This configuration stands out when compared to both isotropic and typical $Lambda$CDM satellite distributions. Purely flattened satellite systems are short-lived chance associations and persist for less than $1~rm{Gyr}$. In contrast, satellite subsets that share roughly the same orbital plane are longer lived, with half of the MW-like systems being at least $4~rm{Gyrs}$ old. On average, satellite systems were flatter in the past, with a minimum in their minor-to-major axes ratio about $9~rm{Gyrs}$ ago, which is the typical infall time of the classical satellites. MW-like satellite distributions have on average always been flatter than the overall population of satellites in MW-mass haloes and, in particular, they correspond to systems with a high degree of anisotropic accretion of satellites. We also show that torques induced by the aspherical mass distribution of the host halo channel some satellite orbits into the hosts equatorial plane, enhancing the fraction of satellites with co-planar orbits. In fact, the orbital poles of co-planar satellites are tightly aligned with the minor axis of the host halo.



قيم البحث

اقرأ أيضاً

We investigate the population of dwarf galaxies with stellar masses similar to the Large Magellanic Cloud (LMC) and M33 in the EAGLE galaxy formation simulation. In the field, galaxies reside in haloes with stellar-to-halo mass ratios of $1.03^{+0.50 }_{-0.31}times10^{-2}$ (68% confidence level); systems like the LMC, which have an SMC-mass satellite, reside in haloes about 1.3 times more massive, which suggests an LMC halo mass at infall, $M_{200}=3.4^{+1.8}_{-1.2}times10^{11}M_odot$ (68% confidence level). The colour distribution of dwarfs is bimodal, with the red galaxies ($g-r>0.6$) being mostly satellites. The fraction of red LMC-mass dwarfs is 15% for centrals, and for satellites this fraction increases rapidly with host mass: from 10% for satellites of Milky Way (MW)-mass haloes to nearly 90% for satellites of groups and clusters. The quenching timescale, defined as the time after infall when half of the satellites have acquired red colours, decreases with host mass from ${>}5$ Gyrs for MW-mass hosts to $2.5$ Gyrs for cluster mass hosts. The satellites of MW-mass haloes have higher star formation rates and bluer colours than field galaxies. This is due to enhanced star formation triggered by gas compression shortly after accretion. Both the LMC and M33 have enhanced recent star formation that could be a manifestation of this process. After infall into their MW-mass hosts, the $g-r$ colours of LMC-mass dwarfs become bluer for the first 2 Gyrs, after which they rapidly redden. LMC-mass dwarfs fell into their MW-mass hosts only relatively recently, with more than half having an infall time of less than 3.5 Gyrs.
Despite the insights gained in the last few years, our knowledge about the formation and evolution scenario for the spheroid-dominated galaxies is still incomplete. New and more powerful cosmological simulations have been developed that together with more precise observations open the possibility of more detailed study of the formation of early-type galaxies (ETGs). The aim of this work is to analyse the assembly histories of ETGs in a $Lambda$-CDM cosmology, focussing on the archeological approach given by the mass-growth histories.We inspected a sample of dispersion-dominated galaxies selected from the largest volume simulation of the EAGLE project. This simulation includes a variety of physical processes such as radiative cooling, star formation (SF), metal enrichment, and stellar and active galactic nucleus (AGN) feedback. The selected sample comprised 508 spheroid-dominated galaxies classified according to their dynamical properties. Their surface brightness profile, the fundamental relations, kinematic properties, and stellar-mass growth histories are estimated and analysed. The findings are confronted with recent observations.The simulated ETGs are found to globally reproduce the fundamental relations of ellipticals. All of them have an inner disc component where residual younger stellar populations (SPs) are detected. A fraction of this inner-disc correlates with bulge-to-total ratio. We find a relation between kinematics and shape that implies that dispersion-dominated galaxies with low $V/sigma_L$ (where $V$ is the average rotational velocity and $sigma_L$ the one dimensional velocity dispersion) tend to have ellipticity smaller than $sim 0.5$ and are dominated by old stars. Abridged
127 - Maarten Baes 2019
The cosmic spectral energy distribution (CSED) is the total emissivity as a function of wavelength of galaxies in a given cosmic volume. We compare the observed CSED from the UV to the submm to that computed from the EAGLE cosmological hydrodynamical simulation, post-processed with stellar population synthesis models and including dust radiative transfer using the SKIRT code. The agreement with the data is better than 0.15 dex over the entire wavelength range at redshift $z=0$, except at UV wavelengths where the EAGLE model overestimates the observed CSED by up to a factor 2. Global properties of the CSED as inferred from CIGALE fits, such as the stellar mass density, mean star formation density, and mean dust-to-stellar-mass ratio, agree to within better than 20 per cent. At higher redshift, EAGLE increasingly underestimates the CSED at optical-NIR wavelengths with the FIR/submm emissivity underestimated by more than a factor of 5 by redshift $z=1$. We believe that these differences are due to a combination of incompleteness of the EAGLE-SKIRT database, the small simulation volume and the consequent lack of luminous galaxies, and our lack of knowledge on the evolution of the characteristics of the interstellar dust in galaxies. The impressive agreement between the simulated and observed CSED at lower $z$ confirms that the combination of EAGLE and SKIRT dust processing yields a fairly realistic representation of the local Universe.
We present the evolution of galaxy sizes, from redshift 2 to 0, for actively star forming and passive galaxies in the cosmological hydrodynamical 1003 cMpc3 simulation of the EAGLE project. We find that the sizes increase with stellar mass , but that the relation weakens with increasing redshift. Separating galaxies by their star formation activity, we find that passive galaxies are typically smaller than active galaxies at fixed stellar mass. These trends are consistent with those found in observations and the level of agreement between the predicted and observed size - mass relation is of order 0.1 dex for z < 1 and 0.2-0.3 dex from redshift 1 to 2. We use the simulation to compare the evolution of individual galaxies to that of the population as a whole. While the evolution of the size-stellar mass relation for active galaxies provides a good proxy for the evolution of individual galaxies, the evolution of individual passive galaxies is not well represented by the observed size - mass relation due to the evolving number density of passive galaxies. Observations of z approx 2 galaxies have revealed an abundance of massive red compact galaxies, that depletes below z approx 1. We find that a similar population forms naturally in the simulation. Comparing these galaxies to their z = 0 descendants, we find that all compact galaxies grow in size due to the high-redshift stars migrating outwards. Approximately 60% of the compact galaxies increase in size further due to renewed star formation and/or mergers.
We use the EAGLE hydrodynamical simulation to trace the quenching history of galaxies in its 10 most massive clusters. We use two criteria to identify moments when galaxies suffer significant changes in their star formation activity: {it i)} the inst antaneous star formation rate (SFR) strongest drop, $Gamma_{rm SFR}^{rm SD}$, and {it ii)} a quenching criterion based on a minimum threshold for the specific SFR of $lesssim$ 10$^{-11}rm yr^{-1}$. We find that a large fraction of galaxies ($gtrsim 60%$) suffer their $Gamma_{rm SFR}^{rm SD}$ outside the clusters R$_{200}$. This ``pre-processed population is dominated by galaxies that are either low mass and centrals or inhabit low mass hosts ($10^{10.5}$M$_{odot} lesssim$ M$_{rm host} lesssim 10^{11.0}$M$_{odot}$). The host mass distribution is bimodal, and galaxies that suffered their $Gamma_{rm SFR}^{rm SD}$ in massive hosts ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.0}M_{odot}$) are mainly processed within the clusters. Pre-processing mainly limits the total stellar mass with which galaxies arrive in the clusters. Regarding quenching, galaxies preferentially reach this state in high-mass halos ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.5}M_{odot}$). The small fraction of galaxies that reach the cluster already quenched has also been pre-processed, linking both criteria as different stages in the quenching process of those galaxies. For the $z=0$ satellite populations, we find a sharp rise in the fraction of quenched satellites at the time of first infall, highlighting the role played by the dense cluster environment. Interestingly, the fraction of pre-quenched galaxies rises with final cluster mass. This is a direct consequence of the hierarchical cosmological model used in these simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا