ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses

92   0   0.0 ( 0 )
 نشر من قبل Paolo Cazzoletti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, the disk populations in a number of young star-forming regions have been surveyed with ALMA. Understanding the disk properties and their correlation with those of the central star is critical to understand planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is 0.3. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-Shooter spectra for 12 of the objects in our sample. 24 disks are detected, and stringent limits have been put on the average dust mass of the non-detections. Accounting for the upper limits, the average disk mass in CrA is $6pm3,rm M_oplus$, significantly lower than that of disks in other young (1-3 Myr) star forming regions (e.g. Lupus) and appears consistent with the 5-10 Myr old Upper Sco. The position of the stars in our sample on the HR diagram, however, seems to confirm that that CrA has age similar to Lupus. Neither external photoevaporation nor a lower than usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks are small, which could happen if the parent cloud has a low temperature or intrinsic angular momentum, or if the the angular momentum of the cloud is removed by some physical mechanism such as magnetic braking. In order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star and disk formation process, which may vary from region to region, and affect planet formation.



قيم البحث

اقرأ أيضاً

We present ALMA Band 6 observations of a complete sample of protoplanetary disks in the young (1-3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J=2-1 lines. The spatial resolution is 0.25 arcsec with a m edium 3-sigma continuum sensitivity of 0.30 mJy, corresponding to M_dust ~ 0.2 M_earth. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than mm dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission as well as the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, alpha_visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 micron continuum observations, we also calculate the mm spectral index, alpha_mm, for 70 Lupus disks; we find an anti-correlation between alpha_mm and mm flux for low-mass disks (M_dust < 5), followed by a flattening as disks approach alpha_mm = 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
We present the first high-resolution sub-mm survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use ALMA to survey 89 protoplanetary disks around stars with $M_{ast}>0.1~M_{odot}$ in the young (1--3~Myr), nearby (150--200~pc) Lupus complex. Our observations cover the 890~$mu$m continuum and the $^{13}$CO and C$^{18}$O 3--2 lines. We use the sub-mm continuum to constrain $M_{rm dust}$ to a few Martian masses (0.2--0.4~$M_{oplus}$) and the CO isotopologue lines to constrain $M_{rm gas}$ to roughly a Jupiter mass (assuming ISM-like $rm {[CO]/[H_2]}$ abundance). Of 89 sources, we detect 62 in continuum, 36 in $^{13}$CO, and 11 in C$^{18}$O at $>3sigma$ significance. Stacking individually undetected sources limits their average dust mass to $lesssim6$ Lunar masses (0.03~$M_{oplus}$), indicating rapid evolution once disk clearing begins. We find a positive correlation between $M_{rm dust}$ and $M_{ast}$, and present the first evidence for a positive correlation between $M_{rm gas}$ and $M_{ast}$, which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3$times$ higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have $M_{rm gas}lesssim1~M_{rm Jup}$ and gas-to-dust ratios $<100$, assuming ISM-like $rm {[CO]/[H_2]}$ abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.
We report 885$mu$m ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary, with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0-55.6 mJy. The two non-detections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from $sim$0.3-20M$_{oplus}$. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in $M_{dust}$ to $M_{star}$, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early M-stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas:dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M-dwarfs.
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the young Herbig star HD 100546, host to a prominent disk with a deep, wide gap in the dust. The high-resolution 1.3 mm continuum observation reveals fine radial and azimuthal substructures in the form of a complex maze of ridges and trenches sculpting a dust ring. The $^{12}$CO(2-1) channel maps are modulated by wiggles or kinks that deviate from Keplerian kinematics particularly over the continuum ring, where deviations span 90$^circ$ in azimuth, covering 5 km s$^{-1}$. The most pronounced wiggle resembles the imprint of an embedded massive planet of at least 5 M$_{rm Jup}$ predicted from previous hydrodynamical simulations (Perez, Casassus, & Benitez-Llambay 2018). Such planet is expected to open a deep gap in both gas and dust density fields within a few orbital timescales, yet the kinematic wiggles lie near ridges in the continuum. The lesser strength of the wiggles in the $^{13}$CO and C$^{18}$O isotopologues show that the kinematic signature weakens at lower disk heights, and suggests qualitatively that it is due to vertical flows in the disk surface. Within the gap, the velocity field transitions from Keplerian to strongly non-Keplerian via a twist in position angle, suggesting the presence of another perturber and/or an inner warp. We also present VLT/SPHERE sparse aperture masking data which recovers scattered light emission from the gaps edges but shows no evidence for signal within the gap, discarding a stellar binary origin for its opening.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta ry disks around $sigma$ Orionis members with $M_{ast}gtrsim0.1 M_{odot}$. Our observations cover the 1.33 mm continuum and several CO $J=2-1$ lines: out of 92 sources, we detect 37 in the mm continuum and six in $^{12}$CO, three in $^{13}$CO, and none in C$^{18}$O. Using the continuum emission to estimate dust mass, we find only 11 disks with $M_{rm dust}gtrsim10 M_{oplus}$, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5$times$ lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in $sigma$ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the $M_{rm dust}$-$M_{ast}$ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations $>1.5$ pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا