ﻻ يوجد ملخص باللغة العربية
Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo-randomized acquisition patterns. The accuracy of the resulting multi-parameters is very important for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.
Purpose: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that can simultaneously quantify tissue relaxometries for muscle and bone in musculoskeletal systems and tissue components in brain and therefore can s
Magnetic Resonance Fingerprinting (MRF) is a method to extract quantitative tissue properties such as T1 and T2 relaxation rates from arbitrary pulse sequences using conventional magnetic resonance imaging hardware. MRF pulse sequences have thousands
Purpose: To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. Methods: We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of
Purpose: This work proposes a novel approach to efficiently generate MR fingerprints for MR fingerprinting (MRF) problems based on the unsupervised deep learning model generative adversarial networks (GAN). Methods: The GAN model is adopted and modif
Magnetic resonance Fingerprinting (MRF) is a relatively new multi-parametric quantitative imaging method that involves a two-step process: (i) reconstructing a series of time frames from highly-undersampled non-Cartesian spiral k-space data and (ii)