ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrahigh Elastically Compressible and Strain-Engineerable Intermetallic Compounds Under Uniaxial Mechanical Loading

95   0   0.0 ( 0 )
 نشر من قبل Seok-Woo Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermetallic compounds possess unique atomic arrangements that often lead to exceptional material properties, but their extreme brittleness usually causes fracture at a limited strain of less than 1% and prevents their practical use. Therefore, it is critical for them to exhibit either plasticity or some form of structural transition to absorb and release a sufficient amount of mechanical energy before failure occurs. This study reports that the ThCr2Si2-structured intermetallic compound (CaFe2As2) and a hybrid of its structure (CaKFe4As4) with 2 {mu}m in diameter and 6 {mu}m in height can exhibit superelasticity with strain up to 17% through a reversible, deformation-induced, lattice collapse, leading to a modulus of resilience orders of magnitude higher than that of most engineering materials. Such superelasticity also can enable strain engineering, which refers to the modification of material properties through elastic strain. Density Functional Theory calculations and cryogenic nanomechanical tests predict that superconductivity in CaKFe4As4 could be turned on/off through the superelasticity process, before fracture occurs, even under uniaxial compression, which is the favorable switching loading mode in most engineering applications. Our results suggest that other members with the same crystal structure (more than 2500 intermetallic compounds), and substitution series based on them should be examined for the possibility of manifesting similar superelastic and strain-engineerable functional properties.



قيم البحث

اقرأ أيضاً

The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly a non-conventional superconductor with a real $T_{rm c}$ significantly exceeding the values obtained within Bardeen-Cooper-Schrieffer (BCS) theory.
To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr$_7$Ni$_2$Si$_5$, and YMn$_4$Al$_8$.
We develop a model for the gliding of dislocations and plasticity in solid He-4. This model takes into account the Peierls barrier, multiplication and interaction of dislocations, as well as classical thermally and mechanically activated processes le ading to dislocation glide. We specifically examine the dc stress-strain curve and how it is affected by temperature, strain rate, and dislocation density. As a function of temperature and shear strain, we observe plastic deformation and discuss how this may be related to the experimental observation of elastic anomalies in solid hcp He-4 that have been discussed in connection with the possibility of supersolidity or giant plasticity. Our theory gives several predictions for the dc stress strain curves, for example, the yield point and the change in the work-hardening rate and plastic dissipation peak, that can be compared directly to constant strain rate experiments and thus provide bounds on model parameters.
In the present work, a method for the study of the structural deformations of two dimensional planar structures under uniaxial strain is presented. The method is based on molecular mechanics using the original stick and spiral model and a modified on e which includes second nearest neighbor interactions for bond stretching. As we show, the method allows an accurate prediction of the structural deformations of any two dimensional planar structure as a function of strain, along any strain direction in the elastic regime, if structural deformations are known along specific strain directions, which are used to calculate the stick and spiral model parameters. Our method can be generalized including other strain conditions and not only uniaxial strain. We apply this method to graphene and we test its validity, using results obtained from {it ab initio} Density Functional Theory calculations. What we find is that the original stick and spiral model is not appropriate to describe accurately the structural deformations of graphene in the elastic regime. However, the introduction of second nearest neighbor interactions provides a very accurate description.
354 - V. Hardy , S. Majumdar , S. Crowe 2003
Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- o f these jumps depends critically on the magnetic field sweep rate used to record the data. It is proposed that, for both compounds, the martensitic character of their antiferromagnetic-to-ferromagnetic transitions is at the origin of the magnetization steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا