ﻻ يوجد ملخص باللغة العربية
A Heisenberg spin-$s$ chain with alternating ferromagnetic ($-J_1^F<0$) and antiferromagnetic ($J_1^A>0$) nearest-neighbor (NN) interactions, exhibits the Dimer and spin-$2s$ Haldane phases in the limits $J_1^F/J_1^A rightarrow 0$ and $J_1^F/J_1^A rightarrow infty$ respectively. These two phases are understood to be topologically equivalent. Induction of the frustration through the next nearest-neighbor ferromagnetic interaction ($-J_2^F<0$) produces a very rich quantum phase diagram. With frustration, the whole phase diagram is divided into a ferromagnetic (FM) and a nonmagnetic (NM) phase. For $s=1/2$, the full NM phase is seen to be of Haldane-Dimer type, but for $s>1/2$, a spiral phase comes between the FM and the Haldane-Dimer phases. The study of a suitably defined string-order parameter and spin-gap at the phase boundary indicates that the Haldane-Dimer and spiral phases have different topological characters. We also find that, along the $J_2^F=frac 12 J_1^F$ line in the NM phase, an NN dimer state is the {it exact} groundstate, provided $J_1^A>J_C=kappa J_1^F$ where $kappa le s + h$ for applied magnetic field $h$. Without magnetic field, the position of $J_C$ is on the FM-NM phase boundary when $s=1/2$, but for $s>1/2$, the location of $J_C$ is on the phase separation line between the Haldane-Dimer and spiral phases.
In frustrated spin ladders composed of antiferromagnetically coupled chains, homogeneous or inhomogeneous, the interplay of frustration and correlations causes the emergence of two phases, Haldane (H) phase and rung singlet (RS) phase, in which the t
For the Haldane phase, the magnetic field usually tends to break the symmetry and drives the system into a topologically trivial phase. Here, we report a novel reentrance of the Haldane phase at zero temperature in the spin-1 antiferromagnetic Heisen
We study spontaneous dimerization and emergent criticality in a spin-3/2 chain with antiferromagnetic nearest-neighbor $J_1$, next-nearest-neighbor $J_2$ and three-site $J_3$ interactions. In the absence of three-site interaction $J_3$, we provide ev
Ba3Mn2O8 is a spin-dimer compound based on pairs of S=1, 3d^2, Mn^{5+} ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero-field. Here we present the first results of thermodynamic meas
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long