ﻻ يوجد ملخص باللغة العربية
The antenna selection (AS) in non-orthogonal multiple access (NOMA) networks is still a challenging problem since finding optimal AS solution may not be available for all channel realizations and has quite computational complexity when it exists. For this reason, in this paper, we develop a new suboptimal solution, majority based transmit antenna selection (TAS-maj), with significant reduction in computational complexity. The TAS-maj basically selects the transmit antenna with the majority. It is more efficient when compared to previously proposed suboptimal AS algorithms, namely max-max-max (A^3) and max-min-max (AIA) because these schemes are merely interested in optimizing the performance of the strongest and weakest users, respectively at the price of worse performance for the remaining users. On the other hand, the TAS-maj scheme yields better performance for more than half of mobile users in the NOMA networks. In this paper, we consider a multiple-input multiple-output communication system, where all the nodes are equipped with multi-antenna. Besides the TAS-maj is employed at the base station, a maximal ratio combining (MRC) is also employed at each mobile user in order to achieve superior performance. The impact of the channel estimation errors (CEEs) and feedback delay (FD) on the performance of the TAS-maj/MRC scheme is studied in the NOMA network over Nakagami-m fading channels.
This paper studies the performance of a downlink non-orthogonal multiple access (NOMA) based cooperative network with maximal ratio transmission/receive antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of channel estimation
This paper investigates the application of deep deterministic policy gradient (DDPG) to intelligent reflecting surface (IRS) based unmanned aerial vehicles (UAV) assisted non-orthogonal multiple access (NOMA) downlink networks. The deployment of the
For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper,
Communication at high carrier frequencies such as millimeter wave (mmWave) and terahertz (THz) requires channel estimation for very large bandwidths at low SNR. Hence, allocating an orthogonal pilot tone for each coherence bandwidth leads to excessiv
The presence of rich scattering in indoor and urban radio propagation scenarios may cause a high arrival density of multipath components (MPCs). Often the MPCs arrive in clusters at the receiver, where MPCs within one cluster have similar angles and