ﻻ يوجد ملخص باللغة العربية
Forward asteroseismic modelling plays an important role towards a complete understanding of the physics taking place in deep stellar interiors. With a dynamical mass in the range over which models develop convective cores while in the main sequence, the solar-like oscillator $alpha$ Centauri A presents itself as an interesting case study. We address the impact of varying the metallicity mixture on the determination of the energy transport process at work in the core of $alpha$ Centauri A. We find that $gtrsim$ 70$%$ of models reproducing the revised dynamical mass of $alpha$ Centauri A have convective cores, regardless of the metallicity mixture adopted. This is consistent with the findings of Nsamba et al., where nuclear reaction rates were varied instead. Given these results, we propose that $alpha$ Centauri A be adopted in the calibration of stellar model parameters when modelling solar-like stars with convective cores.
Understanding the physical process responsible for the transport of energy in the core of $alpha$ Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measuremen
Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited
Omega Centauri is a peculiar Globular Cluster formed by a complex stellar population. To shed light on this, we studied 172 stars belonging to the 5 SGBs that we can identify in our photometry, in order to measure their [Fe/H] content as well as esti
We present models of alpha Centauri A and B implementing an entropy calibration of the mixing-length parameter alpha_MLT, recently developed and successfully applied to the Sun (Spada et al. 2018, ApJ, 869, 135). In this technique the value of alpha_