ترغب بنشر مسار تعليمي؟ اضغط هنا

The Discovery Potential of Space-Based Gravitational Wave Astronomy

209   0   0.0 ( 0 )
 نشر من قبل Neil J. Cornish
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A space-based interferometer operating in the previously unexplored mHz gravitational band has tremendous discovery potential. If history is any guide, the opening of a new spectral band will lead to the discovery of entirely new sources and phenomena. The mHz band is ideally suited to exploring beyond standard model processes in the early universe, and with the sensitivities that can be reached with current technologies, the discovery space for exotic astrophysical systems is vast.



قيم البحث

اقرأ أيضاً

104 - Alberto Sesana 2017
Soon after the observation of the first black hole binary (BHB) by advanced LIGO (aLIGO), GW150914, it was realised that such a massive system would have been observable in the milli-Hz (mHz) band few years prior to coalescence. Operating in the freq uency range 0.1-100 mHz, the Laser Interferometer Space Antenna (LISA) can potentially detect up to thousands inspiralling BHBs, based on the coalescence rates inferred from the aLIGO first observing run (O1). The vast majority of them (those emitting at $f<10$ mHz) will experience only a minor frequency drift during LISA lifetime, resulting in signals similar to those emitted by galactic white dwarf binaries. At $f>10$ mHz however, several of them will sweep through the LISA band, eventually producing loud coalescences in the audio-band probed by aLIGO. This contribution reviews the scientific potential of these new class of LISA sources which, in the past few months, has been investigated in several contexts, including multi-messenger and multi-band gravitational wave astronomy, BHB astrophysics, tests of alternative theories of gravity and cosmography.
The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave (GW) spectrum between 0.1 and 100 mHz, the mHz band. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum, around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020s is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040s. The mission concept would then be proposed to Astro2030. Only space based missions can access the GW spectrum between 10 nHz and 1 Hz because of the Earths seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA.
157 - K. J. Lee , N. Wex , M. Kramer 2011
Abbreviated: We investigate the potential of detecting the gravitational wave from individual binary black hole systems using pulsar timing arrays (PTAs) and calculate the accuracy for determining the GW properties. This is done in a consistent ana lysis, which at the same time accounts for the measurement of the pulsar distances via the timing parallax. We find that, at low redshift, a PTA is able to detect the nano-Hertz GW from super massive black hole binary systems with masses of $sim10^8 - 10^{10},M_{sun}$ less than $sim10^5$,years before the final merger, and those with less than $sim10^3 - 10^4$ years before merger may allow us to detect the evolution of binaries. We derive an analytical expression to describe the accuracy of a pulsar distance measurement via timing parallax. We consider five years of bi-weekly observations at a precision of 15,ns for close-by ($sim 0.5 - 1$,kpc) pulsars. Timing twenty pulsars would allow us to detect a GW source with an amplitude larger than $5times 10^{-17}$. We calculate the corresponding GW and binary orbital parameters and their measurement precision. The accuracy of measuring the binary orbital inclination angle, the sky position, and the GW frequency are calculated as functions of the GW amplitude. We note that the pulsar term, which is commonly regarded as noise, is essential for obtaining an accurate measurement for the GW source location. We also show that utilizing the information encoded in the GW signal passing the Earth also increases the accuracy of pulsar distance measurements. If the gravitational wave is strong enough, one can achieve sub-parsec distance measurements for nearby pulsars with distance less than $sim 0.5 - 1$,kpc.
Low-frequency gravitational-wave astronomy can perform precision tests of general relativity and probe fundamental physics in a regime previously inaccessible. A space-based detector will be a formidable tool to explore gravitys role in the cosmos, p otentially telling us if and where Einsteins theory fails and providing clues about some of the greatest mysteries in physics and astronomy, such as dark matter and the origin of the Universe.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emiss ion of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a $usim 30$ second time window and $usim 200 mendash 500 punits{deg}^{2}$ sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a emph{prompt} radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of $usim 2$. For some models, we also map the parameter space that may be constrained by non-detections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا