ﻻ يوجد ملخص باللغة العربية
In this conference-proceedings contribution, we review recent advances in placing model-independent constraints on the properties of cold and dense QCD matter inside neutron stars. In addition to introducing new bounds for the Equation of State, we explain how these results may be used to make robust statements about the physical phase of strongly interacting matter in the centers of neutron stars of different masses. Our findings indicate that the existence of quark-matter cores inside massive neutron stars appears to be a very common feature of the allowed Equations of State, and should not be considered an exotic or unlikely scenario.
The jet opening angle and inclination of GW170817 -- the first detected binary neutron star merger -- were vital to understand its energetics, relation to short gamma-ray bursts, and refinement of the standard siren-based determination of the Hubble
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter, in particul
Coalescing neutron star (NS)-black hole (BH) binaries are promising sources of gravitational-waves (GWs) to be detected within the next few years by current GW observatories. If the NS is tidally disrupted outside the BH innermost stable circular orb
Aql X-1 is a prolific transient neutron star low-mass X-ray binary that exhibits an accretion outburst approximately once every year. Whether the thermal X-rays detected in intervening quiescent episodes are the result of cooling of the neutron star
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutro