ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic many-body theory of Kondo insulators: Renormalizations and fluctuations in Ce$_3$Bi$_4$Pt$_3$

152   0   0.0 ( 0 )
 نشر من قبل Jan M. Tomczak
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jan M. Tomczak




اسأل ChatGPT حول البحث

Our theoretical understanding of heavy-fermion compounds mainly derives from iconic models, such as those due to Kondo or Anderson. While providing invaluable qualitative insight, detailed comparisons to experiments are encumbered by the materials complexity, including the spin-orbit coupling, crystal fields, and ligand hybridizations. Here, we study the paradigmatic Kondo insulator Ce$_3$Bi$_4$Pt$_3$ with a first principles dynamical mean-field method that includes these complications. We find that salient signatures of many-body effects in this material---large effective masses, the insulator-to-metal crossover, the concomitant emergence of Curie-Weiss behaviour and notable transfers of optical spectral weight---are captured quantitatively. With this validation, we elucidate the fabric of the many-body state. In particular, we extent the phenomenology of the Kondo crossover to time-scales of fluctuations: We evidence that spin and charge degrees of freedom each realize two regimes in which fluctuations adhere to vastly different decay laws. We find these regimes to be separated by a {it common} temperature $T^{max}_chi$, linked to the onset of Kondo screening. Interestingly, below (above) $T^{max}_chi$, valence fluctuations become faster (slower) than the dynamical screening of the local moments. Overall, however, spin and charge fluctuations occur on comparable time-scales of $mathcal{O}(0.5-12hbox{ fs})$, placing them on the brink of detection for modern time-resolved probes.



قيم البحث

اقرأ أيضاً

We report the results of high pressure x-ray diffraction, x-ray absorption, and electrical transport measurements of Kondo insulator Ce$_3$Bi$_4$Pt$_3$ up to 42 GPa, the highest pressure reached in the study of any Ce-based KI. We observe a smooth de crease in volume and movement toward intermediate Ce valence with pressure, both of which point to increased electron correlations. Despite this, temperature-dependent resistance data show the suppression of the interaction-driven ambient pressure insulating ground state. We also discuss potential ramifications of these results for the predicted topological KI state.
We study the many-body electronic structure of the stoichiometric and electron-doped trilayer nickelate Pr$_4$Ni$_3$O$_8$ in comparison to that of the stoichiometric and hole-doped infinite layer nickelate NdNiO$_2$ within the framework of density fu nctional plus dynamical mean field theory, noting that Pr$_4$Ni$_3$O$_8$ has the same nominal carrier concentration as NdNiO$_2$ doped to a level of 1/3 holes/Ni. We find that the correlated Ni-$3d$ shells of both of these low valence nickelates have similar many-body configurations with correlations dominated by the $d_{x^2-y^2}$ orbital. Additionally, when compared at the same nominal carrier concentration, the materials exhibit similar many-body electronic structures, self energies, and correlation strengths. Compared to cuprates, these materials are closer to the Mott-Hubbard regime due to their larger charge transfer energies. Moreover, doping involves the charge reservoir provided by the rare earth $5d$ electrons, as opposed to cuprates where it is realized via the oxygen $2p$ electrons.
We report on the electronic band structure, structural, magnetic and thermal properties of Ce$_2$Rh$_3$Sn$_5$. Ce $L_{mathrm{III}}$-edge XAS spectra give direct evidence for an intermediate valence behaviour. Thermodynamic measurements reveal magneti c transitions at $T_{mathrm{N1}}approx$ 2.9 K and $T_{mathrm{N2}}approx$ 2.4 K. Electrical resistivity shows behaviour typical for Kondo lattices. The coexistence of magnetic order and valence fluctuations in a Kondo lattice system we attribute to a peculiar crystal structure in which Ce ions occupy two distinct lattice sites. Analysis of the structural features of Ce$_2$Rh$_3$Sn$_5$, together with results of electronic band structure calculations and thermodynamic data indicate that Ce2 ions are in an intermediate valence state with the ground state electronic configuration close to 4$f^0$, whereas Ce1 ions are trivalent (4$f^1$) and contribute to the low temperature magnetic ordering. Thus, our joined experimental and theoretical investigations classify Ce$_2$Rh$_3$Sn$_5$ as a multivalent charge-ordered system.
63 - J. H. Shim , Kyoo Kim , B. I. Min 2002
We have investigated electronic structures of La$_3$S$_4$ and Ce$_3$S$_4$ using the LSDA and LSDA+$U$ methods. Calculated density of states (DOS) are compared with the experimental DOS obtained by the valence band photoemission spectroscopy. The DOS at $E_{rm{F}}$ indicates the 5$d$ character in La$_3$S$_4$ and 4$f$ character in Ce$_3$S$_4$. It is found to be nearly half metallic in the ferromagnetic ground state of Ce$_3$S$_4$. %Ce$_3$S$_4$ has ferromagnetic ground states with spin and orbital magnetic %moments of 1.27 $mu_{rm{B}}$ and $-$2.81 $mu_{rm{B}}$ per Ce, respectively, %and shows nearly half metallic ground state. We discuss the superconductivity and structural transition in La$_3$S$_4$, and the absence of structural transition in Ce$_3$S$_4$.
We report the synthesis and basic properties of single crystals of a new binary compound, Yb$_{3}$Pt$_{4}$. The Yb ions in this compound are fully trivalent, and heat capacity measurements show that the crystal field scheme involves a doublet ground state, well separated from the excited states, which are fully occupied above $sim$ 150 K. The heat capacity displays a large, weakly first order anomaly at 2.4 K, where a cusp is observed in the magnetic susceptibility signalling the onset of antiferromagnetic order. The entropy associated with this order is the full Rln2 of the doublet ground state, however the magnetic susceptibility in the ordered phase is dominated by a large and temperature independent component below the Neel temperature. The heat capacity in the ordered state originates with ferromagnetic spin waves, giving evidence for the inherently local moment character of the ordered state. The electrical resistivity is unusually large, and becomes quadratic in temperature exactly at the Neel temperature. The absence of analogous Fermi liquid behavior in the heat capacity and the magnetic susceptibility implies that Yb$_{3}$Pt$_{4}$ is a low electron density system, where the Fermi surface is further gapped by the onset of magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا