ترغب بنشر مسار تعليمي؟ اضغط هنا

Service Equivalence via Multiparty Session Type Isomorphisms

78   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Assel Altayeva




اسأل ChatGPT حول البحث

This paper addresses a problem found within the construction of Service Oriented Architecture: the adaptation of service protocols with respect to functional redundancy and heterogeneity of global communication patterns. We utilise the theory of Multiparty Session Types (MPST). Our approach is based upon the notion of a multiparty session type isomorphism, utilising a novel constructive realisation of service adapter code to establishing equivalence. We achieve this by employing trace semantics over a collection of local types and introducing meta abstractions over the syntax of global types. We develop a corresponding equational theory for MPST isomorphisms. The main motivation for this line of work is to define a type isomorphism that affords the assessment of whether two components/services are substitutables, modulo adaptation code given software components formalised as session types.



قيم البحث

اقرأ أيضاً

There has been a considerable amount of work on retrieving functions in function libraries using their type as search key. The availability of rich component specifications, in the form of behavioral types, enables similar queries where one can searc h a component library using the behavioral type of a component as the search key. Just like for function libraries, however, component libraries will contain components whose type differs from the searched one in the order of messages or in the position of the branching points. Thus, it makes sense to also look for those components whose type is different from, but isomorphic to, the searched one. In this article we give semantic and axiomatic characterizations of isomorphic session types. The theory of session type isomorphisms turns out to be subtle. In part this is due to the fact that it relies on a non-standard notion of equivalence between processes. In addition, we do not know whether the axiomatization is complete. It is known that the isomorphisms for arrow, product and sum types are not finitely axiomatisable, but it is not clear yet whether this negative results holds also for the family of types we consider in this work.
117 - Alceste Scalas 2017
Multiparty Session Types (MPST) are a well-established typing discipline for message-passing processes interacting on sessions involving two or more participants. Session typing can ensure desirable properties: absence of communication errors and dea dlocks, and protocol conformance. However, existing MPST works provide a subject reduction result that is arguably (and sometimes, surprisingly) restrictive: it only holds for typing contexts with strong duality constraints on the interactions between pairs of participants. Consequently, many intuitively correct examples cannot be typed and/or cannot be proved type-safe. We illustrate some of these examples, and discuss the reason for these limitations. Then, we outline a novel MPST typing system that removes these restrictions.
154 - Anson Miu 2021
Modern web programming involves coordinating interactions between browser clients and a server. Typically, the interactions in web-based distributed systems are informally described, making it hard to ensure correctness, especially communication safe ty, i.e. all endpoints progress without type errors or deadlocks, conforming to a specified protocol. We present STScript, a toolchain that generates TypeScript APIs for communication-safe web development over WebSockets, and RouST, a new session type theory that supports multiparty communications with routing mechanisms. STScript provides developers with TypeScript APIs generated from a communication protocol specification based on RouST. The generated APIs build upon TypeScript concurrency practices, complement the event-driven style of programming in full-stack web development, and are compatible with the Node.js runtime for server-side endpoints and the React.js framework for browser-side endpoints. RouST can express multiparty interactions routed via an intermediate participant. It supports peer-to-peer communication between browser-side endpoints by routing communication via the server in a way that avoids excessive serialisation. RouST guarantees communication safety for endpoint web applications written using STScript APIs. We evaluate the expressiveness of STScript for modern web programming using several production-ready case studies deployed as web applications.
116 - Rumyana Neykova 2014
Actor coordination armoured with a suitable protocol description language has been a pressing problem in the actors community. We study the applicability of multiparty session type (MPST) protocols for verification of actor programs. We incorporate s essions to actors by introducing minimum additions to the model such as the notion of actor roles and protocol mailbox. The framework uses Scribble, which is a protocol description language based on multiparty session types. Our programming model supports actor-like syntax and runtime verification mechanism guaranteeing type-safety and progress of the communicating entities. An actor can implement multiple roles in a similar way as an object can implement multiple interfaces. Multiple roles allow for inter-concurrency in a single actor still preserving its progress property. We demonstrate our framework by designing and implementing a session actor library in Python and its runtime verification mechanism.
We present an inference system for a version of the Pi-calculus in Haskell for the session type proposed by Honda et al. The session type is very useful in checking if the communications are well-behaved. The full session type implementation in Haske ll was first presented by Pucella and Tov, which is semi-automatic in that the manual operations for the type representation was necessary. We give an automatic type inference for the session type by using a more abstract representation for the session type based on the de Bruijn levels. We show an example of the session type inference for a simple SMTP client.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا