ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic Anomalous Quantum Hall Effect

207   0   0.0 ( 0 )
 نشر من قبل Sunil Mittal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally realize a photonic analogue of the anomalous quantum Hall insulator using a two-dimensional (2D) array of coupled ring resonators. Similar to the Haldane model, our 2D array is translation invariant, has zero net gauge flux threading the lattice, and exploits next-nearest neighbor couplings to achieve a topologically non-trivial bandgap. Using direct imaging and on-chip transmission measurements, we show that the bandgap hosts topologically robust edge states. We demonstrate a topological phase transition to a conventional insulator by frequency detuning the ring resonators and thereby breaking the inversion symmetry of the lattice. Furthermore, the clockwise or the counter-clockwise circulation of photons in the ring resonators constitutes a pseudospin degree of freedom. We show that the two pseudospins acquire opposite hopping phases and their respective edge states propagate in opposite directions. These results are promising for the development of robust reconfigurable integrated nanophotonic devices for applications in classical and quantum information processing.

قيم البحث

اقرأ أيضاً

148 - Kejie Fang , Yunkai Wang 2019
Effective magnetic fields have enabled unprecedented manipulation of neutral particles including photons. In most studied cases, the effective gauge fields are defined through the phase of mode coupling between spatially discrete elements, such as op tical resonators and waveguides in the case for photons. Here, in the paradigm of Bloch-wave modulated photonic crystals, we show creation of effective magnetic fields for photons in conventional dielectric continua for the first time, via Floquet band engineering. By controlling the phase and wavevector of Bloch waves, we demonstrated anomalous quantum Hall effect for light with distinct topological band features due to delocalized wave interference. Based on a cavity-free architecture, in which Bloch-wave modulations can be enhanced using guided-resonances in photonic crystals, the study here opens the door to the realization of effective magnetic fields at large scales for optical beam steering and topological light-matter phases with broken time-reversal symmetry.
Symmetry-protected photonic topological insulator exhibiting robust pseudo-spin-dependent transportation, analogous to quantum spin Hall (QSH) phases and topological insulators, are of great importance in fundamental physics. Such transportation robu stness is protected by time-reversal symmetry. Since electrons (fermion) and photons (boson) obey different statistics rules and associate with different time-reversal operators (i.e., Tf and Tb, respectively), whether photonic counterpart of Kramers degeneracy is topologically protected by bosonic Tb remains unidentified. Here, we construct the degenerate gapless edge states of two photonic pseudo-spins (left/right circular polarizations) in the band gap of a two-dimensional photonic crystal with strong magneto-electric coupling. We further demonstrated that the topological edge states are in fact protected by Tf rather than commonly believed Tb and their pseudo-spin dependent transportation is robust against Tf invariant impurities, discovering for the first time the topological nature of photons. Our results will pave a way towards novel photonic topological insulators and revolutionize our understandings in topological physics of fundamental particles.
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
We develop a geometric photonic spin Hall effect (PSHE) which manifests as spin-dependent shift in momentum space. It originates from an effective space-variant Pancharatnam-Berry (PB) phase created by artificially engineering the polarization distri bution of the incident light. Unlikely the previously reported PSHE involving the light-matter interaction, the resulting spin-dependent splitting in the geometric PSHE is purely geometrically depend upon the polarization distribution of light which can be tailored by assembling its circular polarization basis with suitably magnitude and phase. This metapolarization idea enables us to manipulate the geometric PSHE by suitably tailoring the polarization geometry of light. Our scheme provides great flexibility in the design of various polarization geometry and polarization-dependent application, and can be extrapolated to other physical system, such as electron beam or atom beam, with the similar spin-orbit coupling underlying.
We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا