ﻻ يوجد ملخص باللغة العربية
Stochastic entropy production, which quantifies the difference between the probabilities of trajectories of a stochastic dynamics and its time reversals, has a central role in nonequilibrium thermodynamics. In the theory of probability, the change in the statistical properties of observables can be represented by a change in the probability measure. We consider operators on the space of probability measure that induce changes in the statistical properties of a process, and formulate entropy productions in terms of these change-of-probability-measure (CPM) operators. This mathematical underpinning of the origin of entropy productions allows us to achieve an organization of various forms of fluctuation relations: All entropy productions have a non-negative mean value, admit the integral fluctuation theorem, and satisfy a rather general fluctuation relation. Other results such as the transient fluctuation theorem and detailed fluctuation theorems then are derived from the general fluctuation relation with more constraints on the operator. We use a discrete-time, discrete-state-space Markov process to draw the contradistinction among three reversals of a process: time reversal, protocol reversal and the dual process. The properties of their corresponding CPM operators are examined, and the domains of validity of various fluctuation relations for entropy productions in physics and chemistry are revealed. We also show that our CPM operator formalism can help us rather easily extend other fluctuations relations for excess work and heat, discuss the martingale properties of entropy productions, and derive the stochastic integral formulas for entropy productions in constant-noise diffusion process with Girsanov theorem. Our formalism provides a general and concise way to study the properties of entropy-related quantities in stochastic thermodynamics and information theory.
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over
A stopping time $T$ is the first time when a trajectory of a stochastic process satisfies a specific criterion. In this paper, we use martingale theory to derive the integral fluctuation relation $langle e^{-S_{rm tot}(T)}rangle=1$ for the stochastic
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dyna
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j