ﻻ يوجد ملخص باللغة العربية
We report on our efforts to test the Einstein Equivalence Principle by measuring the gravitational redshift with the VLBI spacecraft RadioAstron, in an eccentric orbit around Earth with geocentric distances as small as $sim$ 7,000 km and up to 350,000 km. The spacecraft and its ground stations are each equipped with stable hydrogen maser frequency standards, and measurements of the redshifted downlink carrier frequencies were obtained at both 8.4 and 15 GHz between 2012 and 2017. Over the course of the $sim$ 9 d orbit, the gravitational redshift between the spacecraft and the ground stations varies between $6.8 times 10^{-10}$ and $0.6 times 10^{-10}$. Since the clock offset between the masers is difficult to estimate independently of the gravitational redshift, only the variation of the gravitational redshift is considered for this analysis. We obtain a preliminary estimate of the fractional deviation of the gravitational redshift from prediction of $epsilon = -0.016 pm 0.003_{rm stat} pm 0.030_{rm syst}$ with the systematic uncertainty likely being dominated by unmodelled effects including the error in accounting for the non-relativistic Doppler shift. This result is consistent with zero within the uncertainties. For the first time, the gravitational redshift has been probed over such large distances in the vicinity of Earth. About three orders of magnitude more accurate estimates may be possible with RadioAstron using existing data from dedicated interleaved observations combining uplink and downlink modes of operation.
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35
A unique test of general relativity is possible with the space radio telescope RadioAstron. The ultra-stable on-board hydrogen maser frequency standard and the highly eccentric orbit make RadioAstron an ideal instrument for probing the gravitational
We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler compensation and benefits from the highly eccentri
We have resolved the scatter-broadened image of PSR B0329+54 and detected substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these
We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here, we describe this phenomenon, characterize it with averages and correlation functions, and inte