ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Primordial Chirality with Galaxy Spins

75   0   0.0 ( 0 )
 نشر من قبل Hao-Ran Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chiral symmetry is maximally violated in weak interactions, and such microscopic asymmetries in the early Universe might leave observable imprints on astrophysical scales without violating the cosmological principle. In this Letter, we propose a helicity measurement to detect primordial chiral violation. We point out that observations of halo-galaxy angular momentum directions (spins), which are frozen in during the galaxy formation process, provide a fossil chiral observable. From the clustering mode of large scale structure of the Universe, we construct a spin mode in Lagrangian space and show in simulations that it is a good probe of halo-galaxy spins. In standard model, a strong symmetric correlation between the left and right helical components of this spin mode and galaxy spins is expected. Measurements of these correlations will be sensitive to chiral breaking, providing a direct test of chiral symmetry breaking in the early Universe.

قيم البحث

اقرأ أيضاً

Black holes formed in the early universe, prior to the formation of stars, can exist as dark matter and also contribute to the black hole merger events observed in gravitational waves. We set a new limit on the abundance of primordial black holes (PB Hs) by considering interactions of PBHs with the interstellar medium, which result in the heating of gas. We examine generic heating mechanisms, including emission from the accretion disk, dynamical friction, and disk outflows. Using the data from the Leo T dwarf galaxy, we set a new cosmology-independent limit on the abundance of PBHs in the mass range $mathcal{O}(1) M_{odot}-10^7 M_{odot}$, relevant for the recently detected gravitational wave signals from intermediate-mass BHs.
We study the impact that large-scale perturbations of (i) the matter density and (ii) the primordial gravitational potential with local primordial non-Gaussianity (PNG) have on galaxy formation using the IllustrisTNG model. We focus on the linear gal axy bias $b_1$ and the coefficient $b_phi$ of the scale-dependent bias induced by PNG, which describe the response of galaxy number counts to these two types of perturbations, respectively. We perform our study using separate universe simulations, in which the effect of the perturbations is mimicked by changes to the cosmological parameters: modified cosmic matter density for $b_1$ and modified amplitude $mathcal{A}_s$ of the primordial scalar power spectrum for $b_phi$. We find that the widely used universality relation $b_phi = 2delta_c(b_1 - 1)$ is a poor description of the bias of haloes and galaxies selected by stellar mass $M_*$, which is instead described better by $b_phi(M_*) = 2delta_c(b_1(M_*) - p)$ with $p in [0.4, 0.7]$. This is explained by the different impact that matter overdensities and local PNG have on the median stellar-to-halo-mass relation. A simple model of this impact allows us to describe the stellar mass dependence of $b_1$ and $b_phi$ fairly well. Our results also show a nontrivial relation between $b_1$ and $b_phi$ for galaxies selected by color and black hole mass accretion rate. Our results provide refined priors on $b_phi$ for local PNG constraints and forecasts using galaxy clustering. Given that the widely used universality relation underpredicts $b_phi(M_*)$, existing analyses may underestimate the true constraining power on local PNG.
Achieving a precise understanding of galaxy formation in a cosmological context is one of the great challenges in theoretical astrophysics, due to the vast range of spatial scales involved in the relevant physical processes. Observations in the milli meter bands, particularly those using the cosmic microwave background (CMB) radiation as a backlight, provide a unique probe of the thermodynamics of these processes, with the capability to directly measure the density, pressure, and temperature of ionized gas. Moreover, these observations have uniquely high sensitivity into the outskirts of the halos of galaxies and clusters, including systems at high redshift. In the next decade, the combination of large spectroscopic and photometric optical galaxy surveys and wide-field, low-noise CMB surveys will transform our understanding of galaxy formation via these probes.
Galaxy spins can be predicted from the initial conditions in the early Universe through the tidal tensor twist. In simulations, their directions are well preserved through cosmic time, consistent with expectations of angular momentum conservation. We report a $sim 3 sigma$ detection of correlation between observed oriented directions of galaxy angular momenta and their predictions based on the initial density field reconstructed from the positions of SDSS galaxies. The detection is driven by a group of spiral galaxies classified by the Galaxy Zoo as (anti-)clockwise, with a modest improvement from adding galaxies from MaNGA and SAMI surveys. This is the first such detection of the oriented galaxy spin direction, which opens a way to use measurements of galaxy spins to probe fundamental physics in the early Universe.
92 - Ely D. Kovetz 2017
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_sun < M_PBH < 100 M_sun mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ~30 M_sun by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ~5 years of aLIGO data can be used to detect a contribution of >20 M_sun PBHs to dark matter down to f_PBH<0.5 at >99.9% confidence level. Combined with other probes that already suggest tension with f_PBH=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا