ﻻ يوجد ملخص باللغة العربية
We recall first the relations between the syzygies of the Jacobian ideal of the defining equation for a projective hypersurface $V$ with isolated singularities and the versality properties of $V$, as studied by du Plessis and Wall. Then we show how the bounds on the global Tjurina number of $V$ obtained by du Plessis and Wall lead to substantial improvements of our previous results on the stability of the reflexive sheaf $Tlangle Vrangle$ of logarithmic vector fields along $V$, and on the Torelli property in the sense of Dolgachev-Kapranov of $V$.
The discriminant, $D$, in the base of a miniversal deformation of an irreducible plane curve singularity, is partitioned according to the genus of the (singular) fibre, or, equivalently, by the sum of the delta invariants of the singular points of th
Let A be a union of smooth plane curves C_i, such that each singular point of A is quasihomogeneous. We prove that if C is a smooth curve such that each singular point of A U C is also quasihomogeneous, then there is an elementary modification of ran
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.
We study deformations of affine toric varieties. The entire deformation theory of these singularities is encoded by the so-called versal deformation. The main goal of our paper is to construct the homogeneous part of some degree -R of this, i.e. a ma