ترغب بنشر مسار تعليمي؟ اضغط هنا

Element-specific soft X-ray spectroscopy, scattering and imaging studies of skyrmion-hosting compound Co$_8$Zn$_8$Mn$_4$

49   0   0.0 ( 0 )
 نشر من قبل Victor Ukleev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A room-temperature skyrmion-hosting compound Co$_8$Zn$_8$Mn$_4$ has been examined by means of soft X-ray absorption spectroscopy, resonant small-angle scattering and extended reference holography. An element-selective study was performed by exciting the $2p$-to-$3d$ transitions near Co and Mn $L_{2,3}$ absorption edges. By utilizing the coherence of soft X-ray beams the element-specific real-space distribution of local magnetization at different temperatures has been reconstructed using iterative phase retrieval and holography with extended reference. It was shown that the magnetic moments of Co and Mn are ferromagnetically coupled and exhibit similar magnetic patterns. Both imaging methods provide a real-space resolution of 30 nm and allowed to record a magnetic texture in the temperature range between $T,=,20$ K and $T,=120,$ K, demonstrating the elongation of the skyrmions along the principal crystallographic axes at low temperatures. Micromagnetic simulations have shown that such deformation is driven by decreasing ratio of symmetric exchange interaction to antisymmetric Dzyaloshinskii-Moriya interaction in the system and effect of the cubic anisotropy.


قيم البحث

اقرأ أيضاً

The orientation of Neel-type skyrmions in the lacunar spinels GaV$_4$S$_8$ and GaV$_4$Se$_8$ is tied to the polar axes of their underlying crystal structure through the Dzyaloshinskii-Moriya interaction. In these crystals, the skyrmion lattice phase exists for externally applied magnetic fields parallel to these axes and withstands oblique magnetic fields up to some critical angle. Here, we map out the stability of the skyrmion lattice phase in both crystals as a function of field angle and magnitude using dynamic cantilever magnetometry. The measured phase diagrams reproduce the major features predicted by a recent theoretical model, including a reentrant cycloidal phase in GaV$_4$Se$_8$. Nonetheless, we observe a greater robustness of the skyrmion phase to oblique fields, suggesting possible refinements to the model. Besides identifying transitions between the cycloidal, skyrmion lattice, and ferromagnetic states in the bulk, we measure additional anomalies in GaV$_4$Se$_8$ and assign them to magnetic states confined to polar structural domain walls.
87 - L Peyker , C Gold , E-W Scheidt 2009
Substitution of nickel by copper in the heavy fermion system CeNi$_{9-x}$Cu$_x$Ge$_4$ alters the local crystal field environment of the Ce$^{3+}$-ions. This leads to a quantum phase transition near $xapprox0.4$, which is not only driven by the compet ition between Kondo effect and RKKY interaction, but also by a reduction of an effectively fourfold to a twofold degenerate crystal field ground state. To study the consequences of a changing crystal field in CeNi$_8$CuGe$_4$ on its Kondo properties, inelastic neutron scattering (INS) experiments were performed. Two well-defined crystal field transitions were observed in the energy-loss spectra at 4 K. The crystal field level scheme determined by neutron spectroscopy is compared with results from specific heat measurements.
We report the feasibility of using magnetoentropic mapping for the rapid identification of magnetic cycloid and skyrmion phases in uniaxial systems, based on the GaV4S8 and GaV4Se8 model skyrmion hosts with easy-axis and easy-plane anisotropies respe ctively. We show that these measurements can be interpreted with the help of a simple numerical model for the spin Hamiltonian to yield unambiguous assignments for both single phase regions and phase boundaries. In the two lacunar spinel chemistries, we obtain excellent agreement between the measured magnetoentropic features and a minimal spin Hamiltonian built on Heisenberg exchange, single-ion anisotropy, and anisotropic Dzyaloshinskii-Moriya interactions. In particular, we identify characteristic high-entropy behavior in the cycloid phase that serves as a precursor to the formation of skyrmions at elevated temperatures and is a readily-measurable signature of this phase transition. Our results demonstrate that rapid magnetoentropic mapping guided by numerical modeling is an effective means of understanding the complex magnetic phase diagrams innate to skyrmion hosts. One notable exception is the observation of an anomalous, low-temperature high-entropy state in the easy-plane system GaV$_4$Se$_8$, which is not captured in the numerical model. Possible origins of this state are discussed.
The Fe K X-ray absorption near edge structure (XANES) of BaFe2-xCoxAs2 superconductors was investigated. No appreciable alteration in shape or energy position of this edge was observed with Co substitution. This result provides experimental support t o previous ab initio calculations in which the extra Co electron is concentrated at the substitute site and do not change the electronic occupation of the Fe ions. Superconductivity may emerge due to bonding modifications induced by the substitute atom that weakens the spin-density-wave ground state by reducing the Fe local moments and/or increasing the elastic energy penalty of the accompanying orthorhombic distortion.
We study the crystalline and electronic properties of the $textrm{Fe}_{1-x}textrm{Co}_xtextrm{Se}$ system ($x=0$, 0.25, 0.5, 0.75, and 1.0) using X-ray diffraction, X-ray spectroscopy and density functional theory. We show that the introduction of Co $3d$ states in FeSe relaxes the bond strengths and induces a structural transition from tetragonal to hexagonal whose crossover takes place at $xapprox0.38$. This structural transition in turn modifies the magnetic order which can be related to the spin state. Using resonant inelastic X-ray spectroscopy we estimate the spin state of the system; FeSe is found to be in a high spin state (S=2), but Fe is reduced to a low spin state upon Co substitution of $x le 0.25$, well below the structural transition. Finally, we show evidence that FeSe is a moderately correlated system but the introduction of Co into the host lattice weakens the correlation strength for $xge0.25$. These novel findings are important to unravel the mechanisms responsible for the superconducting state in iron-chalcogenide superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا