ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Path One-Shot Neural Architecture Search with Uniform Sampling

116   0   0.0 ( 0 )
 نشر من قبل Zichao Guo
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.

قيم البحث

اقرأ أيضاً

211 - Xuanyi Dong , Yi Yang 2019
Neural architecture search (NAS) aims to automate the search procedure of architecture instead of manual design. Even if recent NAS approaches finish the search within days, lengthy training is still required for a specific architecture candidate to get the parameters for its accurate evaluation. Recently one-shot NAS methods are proposed to largely squeeze the tedious training process by sharing parameters across candidates. In this way, the parameters for each candidate can be directly extracted from the shared parameters instead of training them from scratch. However, they have no sense of which candidate will perform better until evaluation so that the candidates to evaluate are randomly sampled and the top-1 candidate is considered the best. In this paper, we propose a Self-Evaluated Template Network (SETN) to improve the quality of the architecture candidates for evaluation so that it is more likely to cover competitive candidates. SETN consists of two components: (1) an evaluator, which learns to indicate the probability of each individual architecture being likely to have a lower validation loss. The candidates for evaluation can thus be selectively sampled according to this evaluator. (2) a template network, which shares parameters among all candidates to amortize the training cost of generated candidates. In experiments, the architecture found by SETN achieves state-of-the-art performance on CIFAR and ImageNet benchmarks within comparable computation costs. Code is publicly available on GitHub: https://github.com/D-X-Y/AutoDL-Projects.
Despite remarkable progress achieved, most neural architecture search (NAS) methods focus on searching for one single accurate and robust architecture. To further build models with better generalization capability and performance, model ensemble is u sually adopted and performs better than stand-alone models. Inspired by the merits of model ensemble, we propose to search for multiple diverse models simultaneously as an alternative way to find powerful models. Searching for ensembles is non-trivial and has two key challenges: enlarged search space and potentially more complexity for the searched model. In this paper, we propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges. For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking, considering both the potentiality and diversity of candidate operators. For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes. The experiments on ImageNet clearly demonstrate that our solution can improve the supernets capacity of ranking ensemble architectures, and further lead to better search results. The discovered architectures achieve superior performance compared with state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned settings. Moreover, we evaluate the generalization ability and robustness of our searched architecture on the COCO detection benchmark and achieve a 3.1% improvement on AP compared with MobileNetV3. Codes and models are available at https://github.com/researchmm/NEAS.
139 - Houwen Peng , Hao Du , Hongyuan Yu 2020
One-shot weight sharing methods have recently drawn great attention in neural architecture search due to high efficiency and competitive performance. However, weight sharing across models has an inherent deficiency, i.e., insufficient training of sub networks in hypernetworks. To alleviate this problem, we present a simple yet effective architecture distillation method. The central idea is that subnetworks can learn collaboratively and teach each other throughout the training process, aiming to boost the convergence of individual models. We introduce the concept of prioritized path, which refers to the architecture candidates exhibiting superior performance during training. Distilling knowledge from the prioritized paths is able to boost the training of subnetworks. Since the prioritized paths are changed on the fly depending on their performance and complexity, the final obtained paths are the cream of the crop. We directly select the most promising one from the prioritized paths as the final architecture, without using other complex search methods, such as reinforcement learning or evolution algorithms. The experiments on ImageNet verify such path distillation method can improve the convergence ratio and performance of the hypernetwork, as well as boosting the training of subnetworks. The discovered architectures achieve superior performance compared to the recent MobileNetV3 and EfficientNet families under aligned settings. Moreover, the experiments on object detection and more challenging search space show the generality and robustness of the proposed method. Code and models are available at https://github.com/microsoft/cream.git.
108 - Bin Yan , Houwen Peng , Kan Wu 2021
Object tracking has achieved significant progress over the past few years. However, state-of-the-art trackers become increasingly heavy and expensive, which limits their deployments in resource-constrained applications. In this work, we present Light Track, which uses neural architecture search (NAS) to design more lightweight and efficient object trackers. Comprehensive experiments show that our LightTrack is effective. It can find trackers that achieve superior performance compared to handcrafted SOTA trackers, such as SiamRPN++ and Ocean, while using much fewer model Flops and parameters. Moreover, when deployed on resource-constrained mobile chipsets, the discovered trackers run much faster. For example, on Snapdragon 845 Adreno GPU, LightTrack runs $12times$ faster than Ocean, while using $13times$ fewer parameters and $38times$ fewer Flops. Such improvements might narrow the gap between academic models and industrial deployments in object tracking task. LightTrack is released at https://github.com/researchmm/LightTrack.
Neural architecture search (NAS) has shown great promise in designing state-of-the-art (SOTA) models that are both accurate and efficient. Recently, two-stage NAS, e.g. BigNAS, decouples the model training and searching process and achieves remarkabl e search efficiency and accuracy. Two-stage NAS requires sampling from the search space during training, which directly impacts the accuracy of the final searched models. While uniform sampling has been widely used for its simplicity, it is agnostic of the model performance Pareto front, which is the main focus in the search process, and thus, misses opportunities to further improve the model accuracy. In this work, we propose AttentiveNAS that focuses on improving the sampling strategy to achieve better performance Pareto. We also propose algorithms to efficiently and effectively identify the networks on the Pareto during training. Without extra re-training or post-processing, we can simultaneously obtain a large number of networks across a wide range of FLOPs. Our discovered model family, AttentiveNAS models, achieves top-1 accuracy from 77.3% to 80.7% on ImageNet, and outperforms SOTA models, including BigNAS and Once-for-All networks. We also achieve ImageNet accuracy of 80.1% with only 491 MFLOPs. Our training code and pretrained models are available at https://github.com/facebookresearch/AttentiveNAS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا