ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based Transactional Memory

123   0   0.0 ( 0 )
 نشر من قبل Parwat Anjana
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes an efficient framework to execute Smart Contract Transactions (SCTs) concurrently based on object semantics, using optimistic Single-Version Object-based Software Transactional Memory Systems (SVOSTMs) and Multi-Version OSTMs (MVOSTMs). In our framework, a multi-threaded miner constructs a Block Graph (BG), capturing the object-conflicts relations between SCTs, and stores it in the block. Later, validators re-execute the same SCTs concurrently and deterministically relying on this BG. A malicious miner can modify the BG to harm the blockchain, e.g., to cause double-spending. To identify malicious miners, we propose Smart Multi-threaded Validator (SMV). Experimental analysis shows that the proposed multi-threaded miner and validator achieve significant performance gains over state-of-the-art SCT execution framework.

قيم البحث

اقرأ أيضاً

Currently, blockchain proposals are being adopted to solve security issues, such as data integrity, resilience, and non-repudiation. To improve certain aspects, e.g., energy consumption and latency, of traditional blockchains, different architectures , algorithms, and data management methods have been recently proposed. For example, appendable-block blockchain uses a different data structure designed to reduce latency in block and transaction insertion. It is especially applicable in domains such as Internet of Things (IoT), where both latency and energy are key concerns. However, the lack of some features available to other blockchains, such as Smart Contracts, limits the application of this model. To solve this, in this work, we propose the use of Smart Contracts in appendable-block blockchain through a new model called context-based appendable-block blockchain. This model also allows the execution of multiple smart contracts in parallel, featuring high performance in parallel computing scenarios. Furthermore, we present an implementation for the context-based appendable-block blockchain using an Ethereum Virtual Machine (EVM). Finally, we execute this implementation in four different testbed. The results demonstrated a performance improvement for parallel processing of smart contracts when using the proposed model.
Blockchains and smart contracts are an emerging, promising technology, that has received considerable attention. We use the blockchain technology, and in particular Ethereum, to implement a large-scale event-based Internet of Things (IoT) control sys tem. We argue that the distributed nature of the ledger, as well as, Ethereums capability of parallel execution of replicated smart contracts, provide the sought after automation, generality, flexibility, resilience, and high availability. We design a realistic blockchain-based IoT architecture, using existing technologies while by taking into consideration the characteristics and limitations of IoT devices and applications. Furthermore, we leverage blockchains immutability and Ethereums support for custom tokens to build a robust and efficient token-based access control mechanism. Our evaluation shows that our solution is viable and offers significant security and usability advantages.
The main problem faced by smart contract platforms is the amount of time and computational power required to reach consensus. In a classical blockchain model, each operation is in fact performed by each node, both to update the status and to validate the results of the calculations performed by others. In this short survey we sketch some state-of-the-art approaches to obtain an efficient and scalable computation of smart contracts. Particular emphasis is given to sharding, a promising method that allows parallelization and therefore a more efficient management of the computational resources of the network.
The emerging blockchain technology supports decentralized computing paradigm shift and is a rapidly approaching phenomenon. While blockchain is thought primarily as the basis of Bitcoin, its application has grown far beyond cryptocurrencies due to th e introduction of smart contracts. Smart contracts are self-enforcing pieces of software, which reside and run over a hosting blockchain. Using blockchain-based smart contracts for secure and transparent management to govern interactions (authentication, connection, and transaction) in Internet-enabled environments, mostly IoT, is a niche area of research and practice. However, writing trustworthy and safe smart contracts can be tremendously challenging because of the complicated semantics of underlying domain-specific languages and its testability. There have been high-profile incidents that indicate blockchain smart contracts could contain various code-security vulnerabilities, instigating financial harms. When it involves security of smart contracts, developers embracing the ability to write the contracts should be capable of testing their code, for diagnosing security vulnerabilities, before deploying them to the immutable environments on blockchains. However, there are only a handful of security testing tools for smart contracts. This implies that the existing research on automatic smart contracts security testing is not adequate and remains in a very stage of infancy. With a specific goal to more readily realize the application of blockchain smart contracts in security and privacy, we should first understand their vulnerabilities before widespread implementation. Accordingly, the goal of this paper is to carry out a far-reaching experimental assessment of current static smart contracts security testing tools, for the most widely used blockchain, the Ethereum and its domain-specific programming language, Solidity to provide the first...
The performance of existing permissionless smart contract platforms such as Ethereum is limited by the consensus layer. Prism is a new proof-of-work consensus protocol that provably achieves throughput and latency up to physical limits while retainin g the strong guarantees of the longest chain protocol. This paper reports experimental results from implementations of two smart contract virtual machines, EVM and MoveVM, on top of Prism and demonstrates that the consensus bottleneck has been removed. Code can be found at https://github.com/wgr523/prism-smart-contracts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا