ترغب بنشر مسار تعليمي؟ اضغط هنا

The Broken Ray Transform: Additional Properties and New Inversion Formula

49   0   0.0 ( 0 )
 نشر من قبل Michael Walker
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The significance of the broken ray transform (BRT) is due to its occurrence in a number of modalities spanning optical, x-ray, and nuclear imaging. When data are indexed by the scatter location, the BRT is both linear and shift invariant. Analyzing the BRT as a linear system provides a new perspective on the inverse problem. In this framework we contrast prior inversion formulas and identify numerical issues. This has practical benefits as well. We clarify the extent of data required for global reconstruction by decomposing the BRT as a linear combination of cone beam transforms. Additionally we leverage the two dimensional Fourier transform to derive new inversion formulas that are computationally efficient for arbitrary scatter angles. Results of numerical simulations are presented.

قيم البحث

اقرأ أيضاً

173 - N. Teyfouri 2019
The recent application of Fourier Based Iterative Reconstruction Method (FIRM) has made it possible to achieve high-quality 2D images from a fan beam Computed Tomography (CT) scan with a limited number of projections in a fast manner. The proposed me thodology in this article is designed to provide 3D Radon space in linogram fashion to facilitate the use of FIRM with cone beam projections (CBP) for the reconstruction of 3D images in a low dose Cone Beam CT (CBCT).
The article presents an efficient image reconstruction algorithm for single scattering optical tomography (SSOT) in circular geometry of data acquisition. This novel medical imaging modality uses photons of light that scatter once in the body to reco ver its interior features. The mathematical model of SSOT is based on the broken ray (or V-line Radon) transform (BRT), which puts into correspondence to an image function its integrals along V-shaped piecewise linear trajectories. The process of image reconstruction in SSOT requires inversion of that transform. We implement numerical inversion of a broken ray transform in a disc with partial radial data. Our method is based on a relation between the Fourier coefficients of the image function and those of its BRT recently discovered by Ambartsoumian and Moon. The numerical algorithm requires solution of ill-conditioned matrix problems, which is accomplished using a half-rank truncated singular value decomposition method. Several numerical computations validating the inversion formula are presented, which demonstrate the accuracy, speed and robustness of our method in the case of both noise-free and noisy data.
Kernel methods are a highly effective and widely used collection of modern machine learning algorithms. A fundamental limitation of virtually all such methods are computations involving the kernel matrix that naively scale quadratically (e.g., constr ucting the kernel matrix and matrix-vector multiplication) or cubically (solving linear systems) with the size of the data set $N.$ We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications (MVMs) for datasets in moderate dimensions with quasilinear complexity. Typically, analytically grounded fast multiplication methods require specialized development for specific kernels. In contrast, our scheme is based on auto-differentiation and automated symbolic computations that leverage the analytical structure of the underlying kernel. This allows the FKT to be easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Greens functions, including those of the Laplace and Helmholtz equations. Furthermore, the FKT maintains a high, quantifiable, and controllable level of accuracy -- properties that many acceleration methods lack. We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the stochastic neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
In limited data computerized tomography, the 2D or 3D problem can be reduced to a family of 1D problems using the differentiated backprojection (DBP) method. Each 1D problem consists of recovering a compactly supported function $f in L^2(mathcal F)$, where $mathcal F$ is a finite interval, from its partial Hilbert transform data. When the Hilbert transform is measured on a finite interval $mathcal G$ that only overlaps but does not cover $mathcal F$ this inversion problem is known to be severely ill-posed [1]. In this paper, we study the reconstruction of $f$ restricted to the overlap region $mathcal F cap mathcal G$. We show that with this restriction and by assuming prior knowledge on the $L^2$ norm or on the variation of $f$, better stability with Holder continuity (typical for mildly ill-posed problems) can be obtained.
Markov Chain Monte Carlo methods become increasingly popular in applied mathematics as a tool for numerical integration with respect to complex and high-dimensional distributions. However, application of MCMC methods to heavy tailed distributions and distributions with analytically intractable densities turns out to be rather problematic. In this paper, we propose a novel approach towards the use of MCMC algorithms for distributions with analytically known Fourier transforms and, in particular, heavy tailed distributions. The main idea of the proposed approach is to use MCMC methods in Fourier domain to sample from a density proportional to the absolute value of the underlying characteristic function. A subsequent application of the Parsevals formula leads to an efficient algorithm for the computation of integrals with respect to the underlying density. We show that the resulting Markov chain in Fourier domain may be geometrically ergodic even in the case of heavy tailed original distributions. We illustrate our approach by several numerical examples including multivariate elliptically contoured stable distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا