ﻻ يوجد ملخص باللغة العربية
Outliers can contaminate the measurement process of many nonlinear systems, which can be caused by sensor errors, model uncertainties, change in ambient environment, data loss or malicious cyber attacks. When the extended Kalman filter (EKF) is applied to such systems for state estimation, the outliers can seriously reduce the estimation accuracy. This paper proposes an innovation saturation mechanism to modify the EKF toward building robustness against outliers. This mechanism applies a saturation function to the innovation process that the EKF leverages to correct the state estimation. As such, when an outlier occurs, the distorting innovation is saturated and thus prevented from damaging the state estimation. The mechanism features an adaptive adjustment of the saturation bound. The design leads to the development robust EKF approaches for continuous- and discrete-time systems. They are proven to be capable of generating bounded-error estimation in the presence of bounded outlier disturbances. An application study about mobile robot localization is presented, with the numerical simulation showing the efficacy of the proposed design. Compared to existing methods, the proposed approaches can effectively reject outliers of various magnitudes, types and durations, at significant computational efficiency and without requiring measurement redundancy.
A new approach for robust Hinfty filtering for a class of Lipschitz nonlinear systems with time-varying uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz constant of the syste
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date, one o
Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations. We formulate the problem as a state space model and employ t
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and con
Many state estimation and control algorithms require knowledge of how probability distributions propagate through dynamical systems. However, despite hybrid dynamical systems becoming increasingly important in many fields, there has been little work