ﻻ يوجد ملخص باللغة العربية
Hopfions are an intriguing class of string-like solitons, named according to a classical topological concept classifying three-dimensional direction fields. The search of hopfions in real physical systems is going on for nearly half a century, starting with the seminal work of Faddeev. But so far realizations in solids are missing. Here, we present a theory that identifies magnetic materials featuring hopfions as stable states without the assistance of confinement or external fields. Our results are based on an advanced micromagnetic energy functional derived from a spin-lattice Hamiltonian. Hopfions appear as emergent particles of the classical Heisenberg model. Magnetic hopfions represent three-dimensional particle-like objects of nanometre-size dimensions opening the gate to a new generation of spintronic devices in the framework of a truly three-dimensional architecture. Our approach goes beyond the conventional phenomenological models. We derive material-realistic parameters that serve as concrete guidance in the search of magnetic hopfions bridging computational physics with materials science.
We analyze the thermodynamic properties of antiferromagnetic solids subjected to a combination of mutually orthogonal uniform magnetic and staggered fields. Low-temperature series for the pressure, order parameter and magnetization up to two-loop ord
We present micromagnetic simulations on resonant spin wave modes of magnetic Hopfions up to 15 GHz driven by external magnetic fields. A sharp transition is found around 32 mT coinciding with a transition from Hopfions to magnetic torons. The modes e
Topological solitons have been studied for decades in classical field theories, and have started recently to impact condensed matter physics. Among those solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding
Paradigmatic knotted solitons, Hopfions, that are characterized by topological Hopf invariant, are widely investigated in the diverse areas ranging from high energy physics, cosmology and astrophysics to biology, magneto- and hydrodynamics and conden
We show that continuous and spin-lattice models of chiral ferro- and antiferromagnets provide the existence of an infinite number of stable soliton solutions of any integer topological charge. A detailed description of the morphology of new skyrmions