ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Holes and Conformal Regge Bootstrap

174   0   0.0 ( 0 )
 نشر من قبل Andrei Parnachev
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly energetic particles traveling in the background of an asymptotically AdS black hole experience a Shapiro time delay and an angle deflection. These quantities are related to the Regge limit of a heavy-heavy-light-light four-point function of scalar operators in the dual CFT. The Schwarzschild radius of the black hole in AdS units is proportional to the ratio of the conformal dimension of the heavy operator and the central charge. This ratio serves as a useful expansion parameter; its power counts the number of stress tensors in the multi-stress tensor operators which contribute to the four-point function. In the cross-channel the four-point function is determined by the OPE coefficients and anomalous dimensions of the heavy-light double-trace operators. We explain how this data can be obtained and explicitly compute the first and second order terms in the expansion of the anomalous dimensions. We observe perfect agreement with known results in the lightcone limit, which were obtained by computing perturbative corrections to the energy eigenstates in AdS spacetimes.



قيم البحث

اقرأ أيضاً

Every conformal field theory (CFT) above two dimensions contains an infinite set of Regge trajectories of local operators which, at large spin, asymptote to double-twist composites with vanishing anomalous dimension. In two dimensions, due to the exi stence of local conformal symmetry, this and other central results of the conformal bootstrap do not apply. We incorporate exact stress tensor dynamics into the CFT$_2$ analytic bootstrap, and extract several implications for AdS$_3$ quantum gravity. Our main tool is the Virasoro fusion kernel, which we newly analyze and interpret in the bootstrap context. The contribution to double-twist data from the Virasoro vacuum module defines a Virasoro Mean Field Theory (VMFT), its spectrum includes a finite number of discrete Regge trajectories, whose dimensions obey a simple formula exact in the central charge $c$ and external operator dimensions. We then show that VMFT provides a baseline for large spin universality in two dimensions: in every unitary compact CFT$_2$ with $c > 1$ and a twist gap above the vacuum, the double-twist data approaches that of VMFT at large spin $ell$. Corrections to the large spin spectrum from individual non-vacuum primaries are exponentially small in $sqrt{ell}$ for fixed $c$. We analyze our results in various large $c$ limits. Further applications include a derivation of the late-time behavior of Virasoro blocks at generic $c$, a refined understanding and new derivation of heavy-light blocks, and the determination of the cross-channel limit of generic Virasoro blocks. We deduce non-perturbative results about the bound state spectrum and dynamics of quantum gravity in AdS$_3$.
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u nit. Therefore the gravitational decoupling parameter governing three hairy black hole metrics is then bounded to a range wherein one can reliably emulate AdS/CFT with gravitational decoupled solutions, in the tensor vacuum regime.
We explore the structures of light cone and Regge limit singularities of $n$-point Virasoro conformal blocks in $c>1$ two-dimensional conformal field theories with no chiral primaries, using fusion matrix approach. These CFTs include not only hologra phic CFTs dual to classical gravity, but also their full quantum corrections, since this approach allows us to explore full $1/c$ corrections. As the important applications, we study time dependence of Renyi entropy after a local quench and out-of-time ordered correlator (OTOC) at late time. We first show that, the $n$-th ($n>2$) Renyi entropy after a local quench in our CFT grows logarithmically at late time, for any $c$ and any conformal dimensions of excited primary. In particular, we find that this behavior is independent of $c$, contrary to the expectation that the finite $c$ correction fixes the late time Renyi entropy to be constant. We also show that the constant part of the late time Renyi entropy is given by a monodromy matrix. We also investigate OTOCs by using the monodromy matrix. We first rewrite the monodromy matrix in terms of fusion matrix explicitly. By this expression, we find that the OTOC decays exponentially in time, and the decay rates are divided into three patterns, depending on the dimensions of external operators. We note that our result is valid for any $c>1$ and any external operator dimensions. Our monodromy matrix approach can be generalized to the Liouville theory and we show that the Liouville OTOC approaches constant in the late time regime. We emphasize that, there is a number of other applications of the fusion and the monodromy matrix approaches, such as solving the conformal bootstrap equation. Therefore, it is tempting to believe that the fusion and monodromy matrix approaches provide a key to understanding the AdS/CFT correspondence.
We apply numerical conformal bootstrap techniques to the four-point function of a Weyl spinor in 4d non-supersymmetric CFTs. We find universal bounds on operator dimensions and OPE coefficients, including bounds on operators in mixed symmetry represe ntations of the Lorentz group, which were inaccessible in previous bootstrap studies. We find discontinuities in some of the bounds on operator dimensions, and we show that they arise due to a generic yet previously unobserved fake primary effect, which is related to the existence of poles in conformal blocks. We show that this effect is also responsible for similar discontinuities found in four-fermion bootstrap in 3d, as well as in the mixed-correlator analysis of the 3d Ising CFT. As an important byproduct of our work, we develop a practical technology for numerical approximation of general 4d conformal blocks.
We introduce the use of reinforcement-learning (RL) techniques to the conformal-bootstrap programme. We demonstrate that suitable soft Actor-Critic RL algorithms can perform efficient, relatively cheap high-dimensional searches in the space of scalin g dimensions and OPE-squared coefficients that produce sensible results for tens of CFT data from a single crossing equation. In this paper we test this approach in well-known 2D CFTs, with particular focus on the Ising and tri-critical Ising models and the free compactified boson CFT. We present results of as high as 36-dimensional searches, whose sole input is the expected number of operators per spin in a truncation of the conformal-block decomposition of the crossing equations. Our study of 2D CFTs uses only the global $so(2,2)$ part of the conformal algebra, and our methods are equally applicable to higher-dimensional CFTs. When combined with other, already available, numerical and analytical methods, we expect our approach to yield an exciting new window into the non-perturbative structure of arbitrary (unitary or non-unitary) CFTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا