ﻻ يوجد ملخص باللغة العربية
Quantum spin liquids are exotic quantum phases of matter that do not order even at zero temperature. While there are several toy models and simple Hamiltonians that could host a quantum spin liquid as their ground state, it is very rare to find actual, realistic materials that exhibits their properties. At the same time, the classical simulation of such instances of strongly correlated systems is intricate and reliable methods are scarce. In this work, we investigate the quantum magnet Ca$_{10}$Cr$_7$O$_{28}$ that has recently been discovered to exhibit properties of a quantum spin liquid in inelastic neutron scattering experiments. This compound has a distorted bilayer Kagome lattice crystal structure consisting of Cr$^{5+}$ ions with spin-$1/2$ moments. Coincidentally, the lattice structure renders a tensor network algorithm in 2D applicable that can be seen as a new variant of a projected entangled simplex state algorithm in the thermodynamic limit. In this first numerical investigation of this material that takes into account genuine quantum correlations, good agreement with the experimental findings is found. We argue that this is one of the very first studies of physical materials in the laboratory with tensor network methods, contributing to uplifting tensor networks from conceptual tools to methods to describe real two-dimensional quantum materials.
Recently, the bi-layer Kagome lattice material Ca$_{10}$Cr$_7$O$_{28}$ has been shown to be a quasi-two-dimensional quantum spin liquid (QSL) where the frustration arises from a balance between competing ferromagnetic and antiferromagnetic exchange w
Ca$_{10}$Cr$_7$O$_{28}$ is a novel spin-$1/2$ magnet exhibiting spin liquid behaviour which sets it apart from any previously studied model or material. However, understanding Ca$_{10}$Cr$_7$O$_{28}$ presents a significant challenge, because the low
Distinctive effects of dopant valency is discussed using an impurity level 1% doping each of Cr$^{3+}$ and Ni$^{2+}$ in CaBaCo$_4$O$_7$. Through a comparative study of the magnetic and dielectric properties of multiferroic CaBaCo$_{3.96}$Cr$_{0.04}$O
Using maximally localized Wannier functions obtained from DFT calculations, we derive an effective Hubbard Hamiltonian for a bilayer of Sr$_3$Cr$_2$O$_7$, the $n=2$ member of the Ruddlesden-Popper Sr$_{n+1}$Cr$_n$O$_{3n+1}$ system. The model consists
We present several results relating to the contraction of generic tensor networks and discuss their application to the simulation of quantum many-body systems using variational approaches based upon tensor network states. Given a closed tensor networ