ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Measurements of the b{eta}-Decay Response of Liquid Xenon with the LUX Detector

61   0   0.0 ( 0 )
 نشر من قبل Jon Balajthy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from an extensive set of measurements of the b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV.

قيم البحث

اقرأ أيضاً

We report the preparation of a Kr-83m source and its subsequent use in calibrating a liquid xenon detector. Kr-83m atoms were produced through the decay of Rb-83 atoms trapped in zeolite molecular sieve and were then introduced into liquid xenon. Dec aying Kr-83m nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 keV and 32.1 keV from the decay of Kr-83m were both observed. This calibration source will allow the characterization of the scintillation and ionization response of noble liquid detectors at low energies, highly valuable for the search for WIMP dark matter. Kr-83m may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.
Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteris tics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46~keV, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74~keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.
Detectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by mea ns of radioactive sources. However, a microscopic calibration, i.e. the translation from the number of excitation quanta into deposited energy, also necessitates good knowledge of the energy required to produce single scintillation photons or ionisation electrons in liquid xenon. The sum of these excitation quanta is directly proportional to the deposited energy in the target. The proportionality constant is the mean excitation energy and is commonly known as $W$-value. Here we present a measurement of the $W$-value with electronic recoil interactions in a small dual-phase xenon time projection chamber with a hybrid (photomultiplier tube and silicon photomultipliers) photosensor configuration. Our result is based on calibrations at $mathcal{O}(1-10 , mathrm{keV})$ with internal $^{37}$Ar and $^{83text{m}}$Kr sources and single electron events. We obtain a value of $W=11.5 , ^{+0.2}_{-0.3} , mathrm{(syst.)} , mathrm{eV}$, with negligible statistical uncertainty, which is lower than previously measured at these energies. If further confirmed, our result will be relevant for modelling the absolute response of liquid xenon detectors to particle interactions.
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $beta$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction.
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector whose purpose is the direct detection of dark matter via NR which can be induced by collisions between Weakly Interacting Massive Particles (WIMPs) and a xenon nucleus. The inner detector volume contains 832 kg of LXe. $^{252}$Cf was used as an external neutron source for irradiating the detector. The scintillation decay time constant of the resulting neutron induced NR was evaluated by comparing the observed photon detection times with Monte Carlo simulations. Fits to the decay time prefer two decay time components, one for each of the Xe$_{2}^{*}$ singlet and triplet states, with $tau_{S}$ = 4.3$pm$0.6 ns taken from prior research, $tau_{T}$ was measured to be 26.9$^{+0.7}_{-1.1}$ ns with a singlet state fraction F$_{S}$ of 0.252$^{+0.027}_{-0.019}$.We also evaluated the performance of pulse shape discrimination between NR and electron recoil (ER) with the aim of reducing the electromagnetic background in WIMP searches. For a 50% NR acceptance, the ER acceptance was 13.7${pm}$1.0% and 4.1${pm}$0.7% in the energy ranges of 5--10 keV$_{rm ee}$ and 10--15 keV$_{rm ee}$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا