ترغب بنشر مسار تعليمي؟ اضغط هنا

Microreversibility and driven Brownian motion with hydrodynamic long-time correlations

83   0   0.0 ( 0 )
 نشر من قبل P. Gaspard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pierre Gaspard




اسأل ChatGPT حول البحث

A nonequilibrium fluctuation theorem is established for a colloidal particle driven by an external force within the hydrodynamic theory of Brownian motion, describing hydrodynamic memory effects such as the t^(-3/2) power-law decay of the velocity autocorrelation function. The generalized Langevin equation is obtained for the general case of slip boundary conditions between the particle and the fluid. The Gaussian probability distributions for the particle to evolve in position-velocity space are deduced. It is proved that the joint probability distributions of forward and time-reversed paths have a ratio depending only on the work performed by the external force and the fluid temperature, in spite of the nonMarkovian character of the generalized Langevin process.



قيم البحث

اقرأ أيضاً

Brownian motion has played important roles in many different fields of science since its origin was first explained by Albert Einstein in 1905. Einsteins theory of Brownian motion, however, is only applicable at long time scales. At short time scales , Brownian motion of a suspended particle is not completely random, due to the inertia of the particle and the surrounding fluid. Moreover, the thermal force exerted on a particle suspended in a liquid is not a white noise, but is colored. Recent experimental developments in optical trapping and detection have made this new regime of Brownian motion accessible. This review summarizes related theories and recent experiments on Brownian motion at short time scales, with a focus on the measurement of the instantaneous velocity of a Brownian particle in a gas and the observation of the transition from ballistic to diffusive Brownian motion in a liquid.
154 - Yaming Chen , Wolfram Just 2013
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositio ns on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st eady states or free-cooling dynamics. Analytical results for spatial and temporal correlations are provided by analytical diagonalisation of the systems equations in the infinite size limit. We demonstrate that spatial correlations are scale-free and time-scales become exceedingly long when the system is driven only at the boundaries. On the contrary, in the case a bath is coupled to the bulk sites too, an exponential correlation decay is found with a finite characteristic length. This is also true in the free cooling regime, but in this case the correlation length grows diffusively in time. We discuss the crucial role of boundary driving for long-range correlations and slow time-scales, proposing an analogy between this simplified dynamical model and dense vibro-fluidized granular materials. Several generalizations and connections with the statistical physics of active matter are also suggested.
A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economi cally of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent $alpha<1$, by itself implying zero probability of hitting a point on a line, lead to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent $alpha$ of the Levy flight component.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first pas sage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا