ﻻ يوجد ملخص باللغة العربية
In this work, we experimentally report the acoustic realization the two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model in a simple network of air channels. We analytically study the steady state dynamics of the system using a set of discrete equations for the acoustic pressure, leading to the 2D SSH Hamiltonian matrix without using tight binding approximation. By building an acoustic network operating in audible regime, we experimentally demonstrate the existence of topological band gap. More supremely, within this band gap we observe the associated edge waves even though the system is open to free space. Our results not only experimentally demonstrate topological edge waves in a zero Berry curvature system but also provide a flexible platform for the study of topological properties of sound waves.
If a full band gap closes and then reopens when we continuously deform a periodic system while keeping its symmetry, a topological phase transition usually occurs. A common model demonstrating such a topological phase transition in condensed matter p
Topological physics strongly relies on prototypical lattice model with particular symmetries. We report here on a theoretical and experimental work on acoustic waveguides that is directly mapped to the one-dimensional Su-Schrieffer-Heeger chiral mode
A network model that can describe light propagation in one-dimensional ring-resonator arrays with a dimer structure is studied as a Su-Schrieffer-Heeger-type Floquet network. The model can be regarded as a Floquet system without periodic driving and
We use Langevin sampling methods within the auxiliary-field quantum Monte Carlo algorithm to investigate the phases of the Su-Schrieffer-Heeger model on the square lattice at the O(4) symmetric point. Based on an explicit determination of the density
We propose an implementation of a generalized Su-Schrieffer-Heeger (SSH) model based on optomechanical arrays. The topological properties of the generalized SSH model depend on the effective optomechanical interactions enhanced by strong driving opti