ﻻ يوجد ملخص باللغة العربية
A large fraction of the baryons and most of the metals in the Universe are unaccounted for. They likely lie in extended galaxy halos, galaxy groups, and the cosmic web, and measuring their nature is essential to understanding galaxy formation. These environments have virial temperatures >10^5.5 K, so the gas should be visible in X-rays. Here we show the breakthrough capabilities of grating spectrometers to 1) detect these reservoirs of hidden metals and mass, and 2) quantify hot gas flows, turbulence, and rotation around the Milky Way and external galaxies. Grating spectrometers are essential instruments for future X-ray missions, and existing technologies provide 50-1500-fold higher throughput compared to current orbiting instruments.
A new Bayesian method for performing an image domain search for line-emitting galaxies is presented. The method uses both spatial and spectral information to robustly determine the source properties, employing either simple Gaussian, or other physica
We present data from Integral Field Spectroscopy for 3 supercompact UV-Luminous Galaxies (ScUVLGs). As nearby (z~0.2), compact (R_50~1-2 kpc), bright Paschen-alpha sources, with unusually high star formation rates (SFR=3-100 M_sun/yr), ScUVLGs are an
By observing radiation-affected gas in the Cepheus B molecular cloud we probe whether the sequential star formation in this source is triggered by the radiation from newly formed stars. We used the dual band receiver GREAT onboard SOFIA to map [C II]
The molecular gas content of normal galaxies at z>4 is poorly constrained, because the commonly used molecular gas tracers become hard to detect. We use the [CII]158um luminosity, recently proposed as a molecular gas tracer, to estimate the molecular
Context: PAHs are thought to be a ubiquitous and important dust component of the interstellar medium. However, the effects of their immersion in a hot (post-shock) gas have never before been fully investigated. Aims: We study the effects of energetic