ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-circular Motions in the Outer Perseus Spiral Arm

123   0   0.0 ( 0 )
 نشر من قبل Nobuyuki Sakai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of parallax and proper motion for five 6.7-GHz methanol maser sources in the outer regions of the Perseus arm as part of the BeSSeL Survey of the Galaxy. By combining our results with previous astrometric results, we determine an average spiral arm pitch angle of $9.2pm1.5$ deg and an arm width of 0.39 kpc for this spiral arm. For sources in the interior side of the Perseus arm, we find on average a radial inward motion in the Galaxy of $13.3pm5.4$ km s$^{-1}$ and counter to Galactic rotation of $6.2pm3.2$ km s$^{-1}$. These characteristics are consistent with models for spiral arm formation that involve gas entering an arm to be shocked and then forming stars. However, similar data for other spiral arms do not show similar characteristics.



قيم البحث

اقرأ أيضاً

We report trigonometric parallax and proper motion measurements of 6.7-GHz CH3OH and 22-GHz H2O masers in eight high-mass star-forming regions (HMSFRs) based on VLBA observations as part of the BeSSeL Survey. The distances of these HMSFRs combined wi th their Galactic coordinates, radial velocities, and proper motions, allow us to assign them to a segment of the Perseus arm with ~< 70 deg. These HMSFRs are clustered in Galactic longitude from ~30 deg to ~50, neighboring a dirth of such sources between longitudes ~50 deg to ~90 deg.
We report trigonometric parallaxes and proper motions of water masers for 12 massive star forming regions in the Perseus spiral arm of the Milky Way as part of the Bar and Spiral Structure Legacy (BeSSeL) Survey. Combining our results with 14 paralla x measurements in the literature, we estimate a pitch angle of 9.9 +/- 1.5 degrees for a section of the Perseus arm. The three-dimensional Galactic peculiar motions of these sources indicate that on average they are moving toward the Galactic center and slower than the Galactic rotation.
We present results of a survey of 14 star-forming regions from the Perseus spiral arm in CS(2-1) and 13CO(1-0) lines with the Onsala Space Observatory 20 m telescope. Maps of 10 sources in both lines were obtained. For the remaining sources a map in just one line or a single-point spectrum were obtained. On the basis of newly obtained and published observational data we consider the relation between velocities of the quasi-thermal CS(2-1) line and 6.7 GHz methanol maser line in 24 high-mass star-forming regions in the Perseus arm. We show that, surprisingly, velocity ranges of 6.7 GHz methanol maser emission are predominantly red-shifted with respect to corresponding CS(2-1) line velocity ranges in the Perseus arm. We suggest that the predominance of the red-shifted masers in the Perseus arm could be related to the alignment of gas flows caused by the large-scale motions in the Galaxy. Large-scale galactic shock related to the spiral structure is supposed to affect the local kinematics of the star-forming regions. Part of the Perseus arm, between galactic longitudes from 85deg to 124deg, does not contain blue-shifted masers at all. Radial velocities of the sources are the greatest in this particular part of the arm, so the velocity difference is clearly pronounced. 13CO(1-0) and CS(2-1) velocity maps of G183.35-0.58 show gas velocity difference between the center and the periphery of the molecular clump up to 1.2 km/s. Similar situation is likely to occur in G85.40-0.00. This can correspond to the case when the large-scale shock wave entrains the outer parts of a molecular clump in motion while the dense central clump is less affected by the shock.
We present trigonometric parallax and proper motion measurements toward 22 GHz water and 6.7 GHz methanol masers in 16 high-mass star-forming regions. These sources are all located in the Scutum spiral arm of the Milky Way. The observations were cond ucted as part of the Bar and Spiral Structure Legacy (BeSSeL) survey. A combination of 14 sources from a forthcoming study and 14 sources from the literature, we now have a sample of 44 sources in the Scutum spiral arm, covering a Galactic longitude range from 0$^circ$ to 33$^circ$. A group of 16 sources shows large peculiar motions of which 13 are oriented toward the inner Galaxy. A likely explanation for these high peculiar motions is the combined gravitational potential of the spiral arm and the Galactic bar.
We report parallaxes and proper motions of three water maser sources in high-mass star-forming regions in the Outer Spiral Arm of the Milky Way. The observations were conducted with the Very Long Baseline Array as part of Bar and Spiral Structure Leg acy Survey and double the number of such measurements in the literature. The Outer Arm has a pitch angle of 14.9 +/- 2.7 deg and a Galactocentric distance of 14.1 +/- 0.6 kpc toward the Galactic anticenter. The average motion of these sources toward the Galactic center is 10.7 +/- 2.1 km/s and we see no sign of a significant fall in the rotation curve out to 15 kpc from the Galactic center. The three-dimensional locations of these star-forming regions are consistent with a Galactic warp of several hundred parsecs from the plane.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا