ترغب بنشر مسار تعليمي؟ اضغط هنا

The Polarimetric and Helioseismic Imager on Solar Orbiter

68   0   0.0 ( 0 )
 نشر من قبل Johann Hirzberger
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO_3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2kx2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.



قيم البحث

اقرأ أيضاً

Metis is the first solar coronagraph designed for a space mission capable of performing simultaneous imaging of the off-limb solar corona in both visible and UV light. The observations obtained with Metis aboard the Solar Orbiter ESA-NASA observatory will enable us to diagnose, with unprecedented temporal coverage and spatial resolution, the structures and dynamics of the full corona from 1.7 $R_odot$ to about 9 $R_odot$. Due to the uniqueness of the Solar Orbiter mission profile, Metis will be able to observe the solar corona from a close vantage point (down to 0.28 AU), achieving out-of-ecliptic views with the increase of the orbit inclination over time. Moreover, observations near perihelion, during the phase of lower rotational velocity of the solar surface relative to the spacecraft, will allow longer-term studies of the coronal features. Thanks to a novel occultation design and a combination of a UV interference coating of the mirrors and a spectral bandpass filter, Metis images the solar corona simultaneously in the visible light band, between 580 and 640 nm, and in the UV H I Lyman-{alpha} line at 121.6 nm. The coronal images in both the UV Lyman-{alpha} and polarised visible light are obtained at high spatial resolution with a spatial scale down to about 2000 km and 15000 km at perihelion, in the cases of the visible and UV light, respectively. A temporal resolution down to 1 second can be achieved when observing coronal fluctuations in visible light. The Metis measurements will allow for complete characterisation of the main physical parameters and dynamics of the electron and neutral hydrogen/proton plasma components of the corona in the region where the solar wind undergoes acceleration and where the onset and initial propagation of coronal mass ejections take place, thus significantly improving our understanding of the region connecting the Sun to the heliosphere.
We present on-sky polarimetric observations with the Gemini Planet Imager (GPI) obtained at straight Cassegrain focus on the Gemini South 8-m telescope. Observations of polarimetric calibrator stars, ranging from nearly unpolarized to strongly polari zed, enable determination of the combined telescope and instrumental polarization. We find the conversion of Stokes $I$ to linear and circular instrumental polarization in the instrument frame to be $I rightarrow (Q_{rm IP}, U_{rm IP}, P_{rm IP}, V_{rm IP}) = (-0.037 pm 0.010%, +0.4338 pm 0.0075%, 0.4354 pm 0.0075%, -6.64 pm 0.56%)$. Such precise measurement of instrumental polarization enables $sim 0.1%$ absolute accuracy in measurements of linear polarization, which together with GPIs high contrast will allow GPI to explore scattered light from circumstellar disk in unprecedented detail, conduct observations of a range of other astronomical bodies, and potentially even study polarized thermal emission from young exoplanets. Observations of unpolarized standard stars also let us quantify how well GPIs differential polarimetry mode can suppress the stellar PSF halo. We show that GPI polarimetry achieves cancellation of unpolarized starlight by factors of 100-200, reaching the photon noise limit for sensitivity to circumstellar scattered light for all but the smallest separations at which the calibration for instrumental polarization currently sets the limit.
We report observations of white-light ejecta in the low corona, for two X-class flares on the 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared ( chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles coronal rain, appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 $pm$ 8 $mathrm{km s^{-1}}$. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments, and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.
Solar X-ray Monitor (XSM) is one of the scientific instruments on-board Chandrayaan-2 orbiter. The XSM along with instrument CLASS (Chandras Large Area Soft x-ray Spectrometer) comprise the remote X-ray fluorescence spectroscopy experiment of Chandra yaan-2 mission with an objective to determine the elemental composition of the lunar surface on a global scale. XSM instrument will measure the solar X-rays in the energy range of 1-15 keV using state-of-the-art Silicon Drift Detector (SDD). The Flight Model (FM) of the XSM payload has been designed, realized and characterized for various operating parameters. XSM provides energy resolution of 180 eV at 5.9 keV with high time cadence of one second. The X-ray spectra of the Sun observed with XSM will also contribute to the study of solar corona. The detailed description and the performance characteristics of the XSM instrument are presented in this paper.
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides a new tool for the systematic observation of white-light flares, including Doppler and magnetic information as well as continuum. In our initial analysis of the highly impulsive gamma-ray flare SOL2010-06-12T00:57 (Mart{i}nez Oliveros et al., Solar Phys., 269, 269, 2011), we reported the signature of a strong blueshift in the two footpoint sources. Concerned that this might be an artifact due to aliasing peculiar to the HMI instrument, we undertook a comparative analysis of Global Oscillations Network Group (GONG++) observations of the same flare, using the PArametric Smearing Correction ALgorithm (PASCAL) algorithm to correct for artifacts caused by variations in atmospheric smearing. This analysis confirms the artifactual nature of the apparent blueshift in the HMI observations, finding weak redshifts at the footpoints instead. We describe the use of PASCAL with GONG++ observations as a complement to the SDO observations and discuss constraints imposed by the use of HMI far from its design conditions. With proper precautions, these data provide rich information on flares and transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا