ترغب بنشر مسار تعليمي؟ اضغط هنا

Instability of Reissner-Nordstrom-AdS black hole under perturbations of a scalar field coupled to Einstein tensor

87   0   0.0 ( 0 )
 نشر من قبل Jeferson de Oliveira
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the instability of a Reissner-Nordstrom-AdS (RNAdS) black hole under perturbations of a massive scalar field coupled to Einstein tensor. Calculating the potential of the scalar perturbations we find that as the strength of the coupling of the scalar to Einstein tensor is increasing, the potential develops a negative well outside the black hole horizon, indicating an instability of the background RNAdS. We then investigate the effect of this coupling on the quasinormal modes. We find that there exists a critical value of the coupling which triggers the instability of the RNAdS. We also find that as the charge of the RNAdS is increased towards its extremal value, the critical value of the derivative coupling is decreased.



قيم البحث

اقرأ أيضاً

Reissner-Nordstrom Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS b lack hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.
We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and Hartle-Hawking quantum states. The two-point function is expressed in terms of the s tandard $lmomega$ modes of the scalar field (those associated with a spherical harmonic $Y_{lm}$ and a temporal mode $e^{-iomega t}$), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external $lmomega$ modes of the field. They allow the computation of $<Phi^{2}>_{ren}$ and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally-coupled massless scalar field (which is non-conformal), relating it to the dAlembertian of $<Phi^{2}>_{ren}$. This expression proves itself useful in various calculations of the renormalized stress-energy tensor.
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent fu nctions expanded around the effective causal radius $r_*$. From the solutions it is obtained that the uncertainty principle is valid for each energy level of space-time, in the form: $E_n, r_{*,n}=hbar/2$, and the charged mass is discretized and distributed in a finite number of states. The classical RNBH entropy is recovered as the limit case where the number of states is very large, and the RNBH quantum temperature depends on the number of states in the interior of the RNBH. This temperature, depending of the number of states of the RNBH, is related with the Bekeinstein-Hawking (BH) temperature: $T_{BH} leq T_{N} < 2,T_{BH}$.
167 - Rong-Jia Yang 2018
We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analyt ically the critical points, the critical fluid velocity, and the critical sound speed. We lay emphasis on the condition under which the accretion is possible. This condition constrains the ratio of mass to charge in a narrow limit, which is independent of dimension for large dimension. This condition may challenge the validity of the cosmic censorship conjecture since a naked singularity is eventually produced as the magnitude of charge increases compared to the mass of black hole.
We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordstrom black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency regimes and shown to be in full agreemen t with a numerical calculation. Our investigation is connected with the recent discussion on the validity of the cosmic censorship conjecture in the quantum realm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا