ﻻ يوجد ملخص باللغة العربية
The most dramatic phases of terrestrial planet formation are thought to be oligarchic and chaotic growth, on timescales of up to 100-200 Myr, when violent impacts occur between large planetesimals of sizes up to proto-planets. Such events are marked by the production of large amounts of debris as has been observed in some exceptionally bright and young debris disks (termed extreme debris disks). Here we report five years of Spitzer measurements of such systems around two young solar-type stars: ID8 and P1121. The short-term (weekly to monthly) and long-term (yearly) disk variability is consistent with the aftermaths of large impacts involving large asteroid-size bodies. We demonstrate that an impact-produced clump of optically thick dust, under the influence of the dynamical and viewing geometry effects, can produce short-term modulation in the disk light curves. The long-term disk flux variation is related to the collisional evolution within the impact-produced fragments once released into a circumstellar orbit. The time-variable behavior observed in the P1121 system is consistent with a hypervelocity impact prior to 2012 that produced vapor condensates as the dominant impact product. Two distinct short-term modulations in the ID8 system argue for two violent impacts at different times and locations. Its long-term variation is consistent with the collisional evolution of two different populations of impact-produced debris dominated by either vapor condensates or escaping boulders. The bright, variable emission from the dust produced in large impacts from extreme debris disks provides a unique opportunity to study violent events during the era of terrestrial planet formation.
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial p
V488 Persei is the most extreme debris disk known in terms of the fraction of the stellar luminosity it intercepts and reradiates. The infrared output of its disk is extremely variable, similar in this respect to the most variable disk known previous
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-si
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan