ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepCenterline: a Multi-task Fully Convolutional Network for Centerline Extraction

227   0   0.0 ( 0 )
 نشر من قبل Zhihui Guo
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel centerline extraction framework is reported which combines an end-to-end trainable multi-task fully convolutional network (FCN) with a minimal path extractor. The FCN simultaneously computes centerline distance maps and detects branch endpoints. The method generates single-pixel-wide centerlines with no spurious branches. It handles arbitrary tree-structured object with no prior assumption regarding depth of the tree or its bifurcation pattern. It is also robust to substantial scale changes across different parts of the target object and minor imperfections of the objects segmentation mask. To the best of our knowledge, this is the first deep-learning based centerline extraction method that guarantees single-pixel-wide centerline for a complex tree-structured object. The proposed method is validated in coronary artery centerline extraction on a dataset of 620 patients (400 of which used as test set). This application is challenging due to the large number of coronary branches, branch tortuosity, and large variations in length, thickness, shape, etc. The proposed method generates well-positioned centerlines, exhibiting lower number of missing branches and is more robust in the presence of minor imperfections of the object segmentation mask. Compared to a state-of-the-art traditional minimal path approach, our method improves patient-level success rate of centerline extraction from 54.3% to 88.8% according to independent human expert review.



قيم البحث

اقرأ أيضاً

Recently, fully convolutional neural networks (FCNs) have shown significant performance in image parsing, including scene parsing and object parsing. Different from generic object parsing tasks, hand parsing is more challenging due to small size, com plex structure, heavy self-occlusion and ambiguous texture problems. In this paper, we propose a novel parsing framework, Multi-Scale Dual-Branch Fully Convolutional Network (MSDB-FCN), for hand parsing tasks. Our network employs a Dual-Branch architecture to extract features of hand area, paying attention on the hand itself. These features are used to generate multi-scale features with pyramid pooling strategy. In order to better encode multi-scale features, we design a Deconvolution and Bilinear Interpolation Block (DB-Block) for upsampling and merging the features of different scales. To address data imbalance, which is a common problem in many computer vision tasks as well as hand parsing tasks, we propose a generalization of Focal Loss, namely Multi-Class Balanced Focal Loss, to tackle data imbalance in multi-class classification. Extensive experiments on RHD-PARSING dataset demonstrate that our MSDB-FCN has achieved the state-of-the-art performance for hand parsing.
Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, robustly detecting pedestrians with a large variant on sizes and with occlusions remains a challenging problem. In this paper, we propose a gated multi-layer convolutional feature extraction method which can adaptively generate discriminative features for candidate pedestrian regions. The proposed gated feature extraction framework consists of squeeze units, gate units and a concatenation layer which perform feature dimension squeezing, feature elements manipulation and convolutional features combination from multiple CNN layers, respectively. We proposed two different gate models which can manipulate the regional feature maps in a channel-wise selection manner and a spatial-wise selection manner, respectively. Experiments on the challenging CityPersons dataset demonstrate the effectiveness of the proposed method, especially on detecting those small-size and occluded pedestrians.
374 - Yueming Jin , Huaxia Li , Qi Dou 2019
Surgical tool presence detection and surgical phase recognition are two fundamental yet challenging tasks in surgical video analysis and also very essential components in various applications in modern operating rooms. While these two analysis tasks are highly correlated in clinical practice as the surgical process is well-defined, most previous methods tackled them separately, without making full use of their relatedness. In this paper, we present a novel method by developing a multi-task recurrent convolutional network with correlation loss (MTRCNet-CL) to exploit their relatedness to simultaneously boost the performance of both tasks. Specifically, our proposed MTRCNet-CL model has an end-to-end architecture with two branches, which share earlier feature encoders to extract general visual features while holding respective higher layers targeting for specific tasks. Given that temporal information is crucial for phase recognition, long-short term memory (LSTM) is explored to model the sequential dependencies in the phase recognition branch. More importantly, a novel and effective correlation loss is designed to model the relatedness between tool presence and phase identification of each video frame, by minimizing the divergence of predictions from the two branches. Mutually leveraging both low-level feature sharing and high-level prediction correlating, our MTRCNet-CL method can encourage the interactions between the two tasks to a large extent, and hence can bring about benefits to each other. Extensive experiments on a large surgical video dataset (Cholec80) demonstrate outstanding performance of our proposed method, consistently exceeding the state-of-the-art methods by a large margin (e.g., 89.1% v.s. 81.0% for the mAP in tool presence detection and 87.4% v.s. 84.5% for F1 score in phase recognition). The code can be found on our project website.
Creating high definition maps that contain precise information of static elements of the scene is of utmost importance for enabling self driving cars to drive safely. In this paper, we tackle the problem of drivable road boundary extraction from LiDA R and camera imagery. Towards this goal, we design a structured model where a fully convolutional network obtains deep features encoding the location and direction of road boundaries and then, a convolutional recurrent network outputs a polyline representation for each one of them. Importantly, our method is fully automatic and does not require a user in the loop. We showcase the effectiveness of our method on a large North American city where we obtain perfect topology of road boundaries 99.3% of the time at a high precision and recall.
We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in a deep network architecture. We show that including the body-part detection task helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several data sets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا