ﻻ يوجد ملخص باللغة العربية
We present the statistical analysis of 33 flare-related coronal jets, and discuss the link between the jet and the flare properties in these events. We selected jets that were observed between 2010 and 2016 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) and are temporally and spatially associated to flares observed by the Reuven Ramaty High Energy Solar Spectrometric Imager (RHESSI). For each jet, we calculated the jet duration and projected velocity in the plane of sky. The jet duration distribution has a median of 18.8 minutes. The projected velocities are between 31 km/s and 456 km/s with a median at 210 km/s. For each associated flare, we performed X-ray imaging and spectroscopy and identify non-thermal emission. Non-thermal emission was detected in only 1/4 of the event considered. We did not find a clear correlation between the flare thermal energy or SXR peak flux and the jet velocity. A moderate anti-correlation was found between the jet duration and the flare SXR peak flux. There is no preferential time delay between the flare and the jet. The X-ray emission is generally located at the base of the jet. The analysis presented in this paper suggests that the flare and jet are part of the same explosive event, that the jet is driven by the propagation of an Alfvenic perturbation, and that the energy partition between flare and jets varies substantially from one event to another.
The energy released during solar flares is believed to be stored in non-potential magnetic fields associated with electric currents flowing in the corona. While no measurements of coronal electric currents are presently available, maps of photospheri
This paper reports on the re-analysis of solar flares in which the hard X-rays (HXRs) come predominantly from the corona rather than from the more usual chromospheric footpoints. All of the 26 previously analyzed event time intervals, over 13 flares,
Coronal jets are ubiquitous in active regions (ARs) and coronal holes. In this paper, we study a coronal jet related to a C3.4 circular-ribbon flare in active region 12434 on 2015 October 16. Two minifilaments were located under a 3D fan-spine struct
The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of th
Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting ma