ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of resonant impurity scattering of carriers on Drude peak broadening in uniaxially strained graphene

45   0   0.0 ( 0 )
 نشر من قبل Sergei Sharapov Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An explanation is proposed for the recently observed in optical spectra of monolayer graphene giant increase in the Drude peak width under applied uniaxial strain. We argue that the underlying mechanism of this increase can be based on resonant scattering of carriers from inevitably present impurities such as adsorbed atoms that can be described by the Fano-Anderson model. We demonstrate that the often neglected scalar deformation potential plays the essential role in this process. The conditions necessary for the maximum effect of the giant Drude peak broadening are determined. It is stressed that the effect is strongly enhanced when the Fermi level gets closer to the Dirac point. Our theoretical analysis provides guidelines for functionalizing graphene samples in a way that would allow to modulate efficiently the Drude peak width by the applied strain.

قيم البحث

اقرأ أيضاً

243 - A.D. Mirlin , E. Tsitsishvili , 2000
An analytical study of the low-field magnetoresistance of a two-dimensional electron gas subject to a weak periodic modulation is presented. We assume small-angle impurity scattering characteristic for high-mobility semiconductor heterostructures. It is shown that the condition for existence of the strong low-field magnetoresistance induced by so-called channeled orbits is $eta^{3/2}qlgg 1$, where $eta$ and $q$ are the strength and the wave vector of the modulation, and $l$ is the transport mean free path. Under this condition, the magnetoresistance scales as $eta^{7/2}$.
We predict the existence of exchange broadening of optical lineshapes in disordered molecular aggregates and a nonuniversal disorder scaling of the localization characteristics of the collective electronic excitations (excitons). These phenomena occu r for heavy-tailed Levy disorder distributions with divergent second moments - distributions that play a role in many branches of physics. Our results sharply contrast with aggregate models commonly analyzed, where the second moment is finite. They bear a relevance for other types of collective excitations as well.
It has recently been shown that interference effects in disordered systems give rise to two non-trivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent f orward scattering (CFS) peak, which emerges when Anderson localization sets in. We study here the CFS effect in the presence of quantum multifractality, a fundamental property of several systems, such as the Anderson model at the metal-insulator transition. We focus on Floquet systems, and find that the CFS peak shape and its peak height dynamics are generically controlled by the multifractal dimensions $D_1$ and $D_2$, and by the spectral form factor. We check our results using a 1D Floquet system whose states have multifractal properties controlled by a single parameter. Our predictions are fully confirmed by numerical simulations and analytic perturbation expansions on this model. Our results, which we believe to be generic, provide an original and direct way to detect and characterize multifractality in experimental systems.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t hat in conventional ferromagnetic materials. For a half-filled impurity in undoped graphene, the presence of ferromagnetism can bring forth Kondo correlations, yielding two kink structures in the local spectral function near the Fermi energy. When the spin splitting of local occupations is compensated by an external magnetic field, the two Kondo kinks merge into a full Kondo resonance characterizing the fully screened ground state. Strikingly, we find the resulting Kondo temperature monotonically increases with the spin polarization of Dirac electrons, which violates the common sense that ferromagnetic bands are usually detrimental to Kondo correlations. Doped ferromagnetic graphene can behave as half metals, where its density of states at the Fermi energy linearly vanishes for one spin direction but keeps finite for the opposite direction. In this regime, we demonstrate an abnormal Kondo resonance that occurs in the first spin direction, while completely absent in the other one.
41 - Y. Toda , S. Adachi , Y. Abe 2004
The degenerate four-wave mixing spectroscopy of uniaxially strained GaN layers is demonstrated using colinearly polarized laser pulses. The nonlinear response of FWM signal on exciton oscillator strength enhances the sensitivity for polarized exciton , allowing for mapping out the in-plane anisotropy of the strain field. The observed high-contrast spectral polarization clearly shows fine structure splittings of excitons, which are also confirmed in the change of quantum beating periods of time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا