ﻻ يوجد ملخص باللغة العربية
In a series of papers, Aluffi and Faber computed the degree of the $GL_3$ orbit closure of an arbitrary plane curve. We attempt to generalize this to the equivariant setting by studying how orbits degenerate under some natural specializations, yielding a fairly complete picture in the case of plane quartics.
A real morsification of a real plane curve singularity is a real deformation given by a family of real analytic functions having only real Morse critical points with all saddles on the zero level. We prove the existence of real morsifications for rea
We characterize plane curve germes non-degenerate in Kouchnirenkos sense in terms of characteristics and intersection multiplicities of branches.
We compute the $GL_{r+1}$-equivariant Chow class of the $GL_{r+1}$-orbit closure of any point $(x_1, ldots, x_n) in (mathbb{P}^r)^n$ in terms of the rank polytope of the matroid represented by $x_1, ldots, x_n in mathbb{P}^r$. Using these classes and
Computing all critical points of a monomial on a very affine variety is a fundamental task in algebraic statistics, particle physics and other fields. The number of critical points is known as the maximum likelihood (ML) degree. When the variety is s
We prove that a degeneration rationally connected varieties over a field of characteristic zero always contains a geometrically irreducible subvariety which is rationally connected.