ﻻ يوجد ملخص باللغة العربية
We consider the problem of designing control laws for stochastic jump linear systems where the disturbances are drawn randomly from a finite sample space according to an unknown distribution, which is estimated from a finite sample of i.i.d. observations. We adopt a distributionally robust approach to compute a mean-square stabilizing feedback gain with a given probability. The larger the sample size, the less conservative the controller, yet our methodology gives stability guarantees with high probability, for any number of samples. Using tools from statistical learning theory, we estimate confidence regions for the unknown probability distributions (ambiguity sets) which have the shape of total variation balls centered around the empirical distribution. We use these confidence regions in the design of appropriate distributionally robust controllers and show that the associated stability conditions can be cast as a tractable linear matrix inequality (LMI) by using conjugate duality. The resulting design procedure scales gracefully with the size of the probability space and the system dimensions. Through a numerical example, we illustrate the superior sample complexity of the proposed methodology over the stochastic approach.
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon es
We present a data-driven model predictive control (MPC) scheme for chance-constrained Markov jump systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated whi
We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID
We propose a Thompson sampling-based learning algorithm for the Linear Quadratic (LQ) control problem with unknown system parameters. The algorithm is called Thompson sampling with dynamic episodes (TSDE) where two stopping criteria determine the len
In quantum engineering, faults may occur in a quantum control system, which will cause the quantum control system unstable or deteriorate other relevant performance of the system. This note presents an estimator-based fault-tolerant control design ap