ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleosynthesis in heavy-ion collisions at the LHC via the Saha equation

70   0   0.0 ( 0 )
 نشر من قبل Volodymyr Vovchenko
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of light (anti-)(hyper-)nuclei in heavy-ion collisions at the LHC is considered in the framework of the Saha equation, making use of the analogy between the evolution of the early universe after the Big Bang and that of Little Bangs created in the lab. Assuming that disintegration and regeneration reactions involving light nuclei proceed in relative chemical equilibrium after the chemical freeze-out of hadrons, their abundances are determined through the famous cosmological Saha equation of primordial nucleosynthesis and show no exponential dependence on the temperature typical for the thermal model. A quantitative analysis, performed using the hadron resonance gas model in partial chemical equilibrium, shows agreement with experimental data of the ALICE collaboration on d, $^3$He, $^3_Lambda$H, and $^4$He yields for a very broad range of temperatures at $T lesssim 155$ MeV. The presented picture is supported by the observed suppression of resonance yields in central Pb-Pb collisions at the LHC.



قيم البحث

اقرأ أيضاً

82 - F. Arleo , P. Aurenche , F. Bopp 2003
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
158 - S. Abreu , S. V. Akkelin , J. Alam 2007
This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute Heavy Ion Collisions at the LHC - Last Call for Predictions, held from May 14th to June 10th 2007.
The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, t emperature, chemical potential and radial flow velocity for different particle species are obtained. Further, these parameters are studied as a function of the mass of the secondary particles. A mass-dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Further a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters.
We calculate the cross section of inclusive dijet photoproduction in ultraperipheral collisions (UPCs) of heavy ions at the CERN Large Hadron Collider using next-to-leading order perturbative QCD and demonstrate that it provides a good description of the ATLAS data. We study the role of this data in constraining nuclear parton distribution functions (nPDFs) using the Bayesian reweighting technique and find that it can reduce current uncertainties of nPDFs at small $x$ by a factor of 2. We also make predictions for diffractive dijet photoproduction in UPCs and examine its potential to shed light on the disputed mechanism of QCD factorization breaking in diffraction.
The three-dimensional pion and kaon emission source functions are extracted from the HKM model simulations of the central Au+Au collisions at the top RHIC energy $sqrt{s_{NN}}=200$ GeV. The model describes well the experimental data, previously obtai ned by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of the rescatterings and long-lived resonances decays in forming of the mentioned long range tails is investigated. The particle rescatterings contribution to the out tail seems to be dominating. The model calculations also show the substantial relative emission times between pions (with mean value 14.5 fm/c in LCMS), including those coming from resonance decays and rescatterings. The prediction is made for the source functions in the LHC Pb+Pb collisions at $sqrt{s_{NN}}=2.76$ TeV, which are still not extracted from the measured correlation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا