ﻻ يوجد ملخص باللغة العربية
We present low-temperature transport measurements of a gate-tunable thin film topological insulator system that features high mobility and low carrier density. Upon gate tuning to a regime around the charge neutrality point, we infer an absence of strong localization even at conductivities well below $e^2/h$, where two dimensional electron systems should conventionally scale to an insulating state. Oddly, in this regime the localization coherence peak lacks conventional temperature broadening, though its tails do change dramatically with temperature. Using a model with electron-impurity scattering, we extract values for the disorder potential and the hybridization of the top and bottom surface states.
Undoped diamond, a remarkable bulk electrical insulator, exhibits a high surface conductivity in air when the surface is hydrogen-terminated. Although theoretical models have claimed that a two-dimensional hole gas is established as a result of surfa
Through a combination of experimental techniques we show that the topmost layer of the topo- logical insulator TlBiSe$_2$ as prepared by cleavage is formed by irregularly shaped Tl islands at cryogenic temperatures and by mobile Tl atoms at room temp
We report on quantum transport measurements on etched graphene nanoribbons encapsulated in hexagonal boron nitride (hBN). At zero magnetic field our devices behave qualitatively very similar to what has been reported for graphene nanoribbons on $text
We measured the response of the surface state spectrum of epitaxial Sb2Te3 thin films to applied gate electric fields by low temperature scanning tunneling microscopy. The gate dependent shift of the Fermi level and the screening effect from bulk car
Using high resolution spin- and angle-resolved photoemission spectroscopy, we map the electronic structure and spin texture of the surface states of the topological insulator Sb2Te3. In combination with density functional calculations (DFT), we direc