ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Temporal Logic Inference for Classification and Identification

64   0   0.0 ( 0 )
 نشر من قبل Zhe Xu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inferring spatial-temporal properties from data is important for many complex systems, such as additive manufacturing systems, swarm robotic systems and biological networks. Such systems can often be modeled as a labeled graph where labels on the nodes and edges represent relevant measurements such as temperatures and distances. We introduce graph temporal logic (GTL) which can express properties such as whenever a nodes label is above 10, for the next 3 time units there are always at least two neighboring nodes with an edge label of at most 2 where the node labels are above 5. This paper is a first attempt to infer spatial (graph) temporal logic formulas from data for classification and identification. For classification, we infer a GTL formula that classifies two sets of graph temporal trajectories with minimal misclassification rate. For identification, we infer a GTL formula that is informative and is satisfied by the graph temporal trajectories in the dataset with high probability. The informativeness of a GTL formula is measured by the information gain with respect to given prior knowledge represented by a prior probability distribution. We implement the proposed approach to classify the graph patterns of tensile specimens built from selective laser sintering (SLS) process with varying strengths, and to identify informative spatial-temporal patterns from experimental data of the SLS cooldown process and simulation data of a swarm of robots.



قيم البحث

اقرأ أيضاً

This paper investigates the problem of inferring knowledge from data so that the inferred knowledge is interpretable and informative to humans who have prior knowledge. Given a dataset as a collection of system trajectories, we infer parametric linea r temporal logic (pLTL) formulas that are informative and satisfied by the trajectories in the dataset with high probability. The informativeness of the inferred formula is measured by the information gain with respect to given prior knowledge represented by a prior probability distribution. We first present two algorithms to compute the information gain with a focus on two types of prior probability distributions: stationary probability distributions and probability distributions expressed by discrete time Markov chains. Then we provide a method to solve the inference problem for a subset of pLTL formulas with polynomial time complexity with respect to the number of Boolean connectives in the formula. We provide implementations of the proposed approach on explaining anomalous patterns, patterns changes and explaining the policies of Markov decision processes.
91 - Zhiyu Liu , Meng Jiang , Hai Lin 2020
We propose a new graph-based spatial temporal logic for knowledge representation and automated reasoning in this paper. The proposed logic achieves a balance between expressiveness and tractability in applications such as cognitive robots. The satisf iability of the proposed logic is decidable. We apply a Hilbert style axiomatization for the proposed graph-based spatial temporal logic, in which Modus ponens and IRR are the inference rules. We show that the corresponding deduction system is sound and complete and can be implemented through SAT.
Whereas standard treatments of temporal logic are adequate for closed systems, having no run-time interactions with their environment, they fall short for reactive systems, interacting with their environments through synchronisation of actions. This paper introduces reactive temporal logic, a form of temporal logic adapted for the study of reactive systems. I illustrate its use by applying it to formulate definitions of a fair scheduler, and of a correct mutual exclusion protocol. Previous definitions of these concepts were conceptually much more involved or less precise, leading to debates on whether or not a given protocol satisfies the implicit requirements.
We propose a measure and a metric on the sets of infinite traces generated by a set of atomic propositions. To compute these quantities, we first map properties to subsets of the real numbers and then take the Lebesgue measure of the resulting sets. We analyze how this measure is computed for Linear Temporal Logic (LTL) formulas. An implementation for computing the measure of bounded LTL properties is provided and explained. This implementation leverages SAT model counting and effects independence checks on subexpressions to compute the measure and metric compositionally.
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to lear n spatial-temporal properties in the form of weighted graph-based signal temporal logic (wGSTL) formulas. For learning wGSTL formulas, we introduce a flexible wGSTL formula structure in which the users preference can be applied in the inferred wGSTL formulas. In the proposed framework, each neuron of the neural networks corresponds to a subformula in a flexible wGSTL formula structure. We initially train a neural network to learn the wGSTL operators and then train a second neural network to learn the parameters in a flexible wGSTL formula structure. We use a COVID-19 dataset and a rain prediction dataset to evaluate the performance of the proposed framework and algorithms. We compare the performance of the proposed framework with three baseline classification methods including K-nearest neighbors, decision trees, and artificial neural networks. The classification accuracy obtained by the proposed framework is comparable with the baseline classification methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا