ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Face Reconstruction from A Single Image Assisted by 2D Face Images in the Wild

92   0   0.0 ( 0 )
 نشر من قبل Xiaoguang Tu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D face reconstruction from a single 2D image is a challenging problem with broad applications. Recent methods typically aim to learn a CNN-based 3D face model that regresses coefficients of 3D Morphable Model (3DMM) from 2D images to render 3D face reconstruction or dense face alignment. However, the shortage of training data with 3D annotations considerably limits performance of those methods. To alleviate this issue, we propose a novel 2D-assisted self-supervised learning (2DASL) method that can effectively use in-the-wild 2D face images with noisy landmark information to substantially improve 3D face model learning. Specifically, taking the sparse 2D facial landmarks as additional information, 2DSAL introduces four novel self-supervision schemes that view the 2D landmark and 3D landmark prediction as a self-mapping process, including the 2D and 3D landmark self-prediction consistency, cycle-consistency over the 2D landmark prediction and self-critic over the predicted 3DMM coefficients based on landmark predictions. Using these four self-supervision schemes, the 2DASL method significantly relieves demands on the the conventional paired 2D-to-3D annotations and gives much higher-quality 3D face models without requiring any additional 3D annotations. Experiments on multiple challenging datasets show that our method outperforms state-of-the-arts for both 3D face reconstruction and dense face alignment by a large margin.



قيم البحث

اقرأ أيضاً

This paper investigates the evaluation of dense 3D face reconstruction from a single 2D image in the wild. To this end, we organise a competition that provides a new benchmark dataset that contains 2000 2D facial images of 135 subjects as well as the ir 3D ground truth face scans. In contrast to previous competitions or challenges, the aim of this new benchmark dataset is to evaluate the accuracy of a 3D dense face reconstruction algorithm using real, accurate and high-resolution 3D ground truth face scans. In addition to the dataset, we provide a standard protocol as well as a Python script for the evaluation. Last, we report the results obtained by three state-of-the-art 3D face reconstruction systems on the new benchmark dataset. The competition is organised along with the 2018 13th IEEE Conference on Automatic Face & Gesture Recognition.
3D face reconstruction from a single image is a classical and challenging problem, with wide applications in many areas. Inspired by recent works in face animation from RGB-D or monocular video inputs, we develop a novel method for reconstructing 3D faces from unconstrained 2D images, using a coarse-to-fine optimization strategy. First, a smooth coarse 3D face is generated from an example-based bilinear face model, by aligning the projection of 3D face landmarks with 2D landmarks detected from the input image. Afterwards, using local corrective deformation fields, the coarse 3D face is refined using photometric consistency constraints, resulting in a medium face shape. Finally, a shape-from-shading method is applied on the medium face to recover fine geometric details. Our method outperforms state-of-the-art approaches in terms of accuracy and detail recovery, which is demonstrated in extensive experiments using real world models and publicly available datasets.
3D face reconstruction from a single image is a task that has garnered increased interest in the Computer Vision community, especially due to its broad use in a number of applications such as realistic 3D avatar creation, pose invariant face recognit ion and face hallucination. Since the introduction of the 3D Morphable Model in the late 90s, we witnessed an explosion of research aiming at particularly tackling this task. Nevertheless, despite the increasing level of detail in the 3D face reconstructions from single images mainly attributed to deep learning advances, finer and highly deformable components of the face such as the tongue are still absent from all 3D face models in the literature, although being very important for the realness of the 3D avatar representations. In this work we present the first, to the best of our knowledge, end-to-end trainable pipeline that accurately reconstructs the 3D face together with the tongue. Moreover, we make this pipeline robust in in-the-wild images by introducing a novel GAN method tailored for 3D tongue surface generation. Finally, we make publicly available to the community the first diverse tongue dataset, consisting of 1,800 raw scans of 700 individuals varying in gender, age, and ethnicity backgrounds. As we demonstrate in an extensive series of quantitative as well as qualitative experiments, our model proves to be robust and realistically captures the 3D tongue structure, even in adverse in-the-wild conditions.
Recently, deep learning based 3D face reconstruction methods have shown promising results in both quality and efficiency.However, training deep neural networks typically requires a large volume of data, whereas face images with ground-truth 3D face s hapes are scarce. In this paper, we propose a novel deep 3D face reconstruction approach that 1) leverages a robust, hybrid loss function for weakly-supervised learning which takes into account both low-level and perception-level information for supervision, and 2) performs multi-image face reconstruction by exploiting complementary information from different images for shape aggregation. Our method is fast, accurate, and robust to occlusion and large pose. We provide comprehensive experiments on three datasets, systematically comparing our method with fifteen recent methods and demonstrating its state-of-the-art performance.
On existing public benchmarks, face forgery detection techniques have achieved great success. However, when used in multi-person videos, which often contain many people active in the scene with only a small subset having been manipulated, their perfo rmance remains far from being satisfactory. To take face forgery detection to a new level, we construct a novel large-scale dataset, called FFIW-10K, which comprises 10,000 high-quality forgery videos, with an average of three human faces in each frame. The manipulation procedure is fully automatic, controlled by a domain-adversarial quality assessment network, making our dataset highly scalable with low human cost. In addition, we propose a novel algorithm to tackle the task of multi-person face forgery detection. Supervised by only video-level label, the algorithm explores multiple instance learning and learns to automatically attend to tampered faces. Our algorithm outperforms representative approaches for both forgery classification and localization on FFIW-10K, and also shows high generalization ability on existing benchmarks. We hope that our dataset and study will help the community to explore this new field in more depth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا