ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragmented Electronic Spins with Quantum Fluctuations in Organic Mott Insulators near Quantum Spin Liquid

65   0   0.0 ( 0 )
 نشر من قبل Shigeki Fujiyama Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic structures of organic Mott insulators X[Pd(dmit)2]2 (X=Me4P, Me4Sb), of which electronic states are located near quantum spin liquid (X=EtMe3Sb), are demonstrated by 13C NMR. Antiferromagnetic spectra and nuclear relaxations show two distinct magnetic moments within each Pd(dmit)2 molecule, which cannot be described by single band dimer-Mott model and requires intramolecular electronic correlation. This unconventional fragmentation of S = 1/2 electron spin with strong quantum fluctuation is presumably caused by nearly degenerated intramolecular multiple orbitals, and shares a notion of quantum liquids where electronic excitations are fractionalized and S = 1/2 spin is no longer an elementary particle.

قيم البحث

اقرأ أيضاً

211 - Arun Paramekanti 2003
We study fractionalization in a spin-liquid Mott insulator defined by a Gutzwiller projected BCS state |0> at half-filling. We construct a trial vison (Z2 vortex) state |V> by projecting an hc/2e vortex and determine when it is orthogonal to |0>. Usi ng a combination of analytical arguments and Monte Carlo calculations we show that generically the spin-liquid is Z2 fractionalized. For microscopic parameters appropriate for high Tc cuprates, we estimate that the vison gap Ev << J, consistent with recent experimental bounds, due to proximity to the bipartite symmetric point where Ev = 0.
We develop a strong coupling approach towards quantum magnetism in Mott insulators for Wannier obstructed bands. Despite the lack of Wannier orbitals, electrons can still singly occupy a set of exponentially-localized but nonorthogonal orbitals to mi nimize the repulsive interaction energy. We develop a systematic method to establish an effective spin model from the electron Hamiltonian using a diagrammatic approach. The nonorthogonality of the Mott basis gives rise to multiple new channels of spin-exchange (or permutation) interactions beyond Hartree-Fock and superexchange terms. We apply this approach to a Kagome lattice model of interacting electrons in Wannier obstructed bands (including both Chern bands and fragile topological bands). Due to the orbital nonorthogonality, as parameterized by the nearest neighbor orbital overlap $g$, this model exhibits stable ferromagnetism up to a finite bandwidth $Wsim U g$, where $U$ is the interaction strength. This provides an explanation for the experimentally observed robust ferromagnetism in Wannier obstructed bands. The effective spin model constructed through our approach also opens up the possibility for frustrated quantum magnetism around the ferromagnet-antiferromagnet crossover in Wannier obstructed bands.
Hitherto, the discrete identification of quantum spin liquid phase, holy grail of condensed matter physics, remains a challenging task experimentally. However, the precursor of quantum spin liquid state may reflect in the spin dynamics even in the pa ramagnetic phase over a wide temperature range as conjectured theoretically. Here we report comprehensive inelastic light (Raman) scattering measurements on the Ir based double perovskite, Gd2ZnIrO6, as a function of different incident photon energies and polarization in a broad temperature range. Our results evidenced the spin fractionalization within the paramagnetic phase reflected in the emergence of a polarization independent quasi-elastic peak at low energies with lowering temperature. Also, the fluctuating scattering amplitude measured via dynamic Raman susceptibility increases with lowering temperature and decreases mildly upon entering into long-range magnetic ordering phase, below 23 K, suggesting the magnetic origin of these fluctuations. This anomalous scattering response is thus indicative of fluctuating fractional spin evincing the quantum spin liquid phase in a three-dimensional double perovskite system.
Nematic fluctuations occur in a wide range of physical systems from liquid crystals to biological molecules to solids such as exotic magnets, cuprates and iron-based high-$T_c$ superconductors. Nematic fluctuations are thought to be closely linked to the formation of Cooper-pairs in iron-based superconductors. It is unclear whether the anisotropy inherent in this nematicity arises from electronic spin or orbital degrees of freedom. We have studied the iron-based Mott insulators La$_{2}$O$_{2}$Fe$_{2}$O$M$$_{2}$ $M$ = (S, Se) which are structurally similar to the iron pnictide superconductors. They are also in close electronic phase diagram proximity to the iron pnictides. Nuclear magnetic resonance (NMR) revealed a critical slowing down of nematic fluctuations as observed by the spin-lattice relaxation rate ($1/T_1$). This is complemented by the observation of a change of electrical field gradient over a similar temperature range using Mossbauer spectroscopy. The neutron pair distribution function technique applied to the nuclear structure reveals the presence of local nematic $C_2$ fluctuations over a wide temperature range while neutron diffraction indicates that global $C_{4}$ symmetry is preserved. Theoretical modeling of a geometrically frustrated spin-$1$ Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of magnetic fluctuations in terms of hidden quadrupolar spin fluctuations. Nematicity is closely linked to geometrically frustrated magnetism, which emerges from orbital selectivity. The results highlight orbital order and spin fluctuations in the emergence of nematicity in Fe-based oxychalcogenides. The detection of nematic fluctuation within these Mott insulator expands the group of iron-based materials that show short-range symmetry-breaking.
213 - Giniyat Khaliullin 2005
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO$_3$, is contrasted to the quantum behavior of orbitals in frustr ated superexchange models as realised in pseudocubic titanites ATiO$_3$ and vanadates AVO$_3$. In YVO$_3$, the lattice and superexchange effects strongly compete -- this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the $t_{2g}$ orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO$_2$ parent compound. Finally, the magnetism of sodium-rich compounds Na$_{1-x}$CoO$_2$ is discussed in terms of a spin/orbital polaronic liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا