ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct millicharged dark matter cannot explain EDGES

79   0   0.0 ( 0 )
 نشر من قبل Cyril Creque-Sarbinowski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heat transfer between baryons and millicharged dark matter has been invoked as a possible explanation for the anomalous 21-cm absorption signal seen by EDGES. Prior work has shown that the solution requires that millicharged particles make up only a fraction $(m_chi/{rm MeV}) 0.0115% lesssim f lesssim 0.4%$ of the dark matter and that their mass $m_chi$ and charge $q_chi$ have values $0.1 lesssim (m_chi/{rm MeV})lesssim 10$ and $10^{-6} lesssim (q_chi/e)lesssim 10^{-4}$. Here we show that such particles come into chemical equilibrium before recombination, and so are subject to a constraint on the effective number $N_{rm eff}$ of relativistic degrees of freedom, which we update using Planck 2018 data. We moreover determine the precise relic abundance $f$ that results for a given mass $m_chi$ and charge $q_chi$ and incorporate this abundance into the constraints on the millicharged-dark-matter solution to EDGES. With these two results, the solution is ruled out if the relic abundance is set by freeze-out.



قيم البحث

اقرأ أيضاً

We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to tha t in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at nuclear density, allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the neutron star, which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices.
We investigate the hypothesis that Coulomb-type interactions between dark matter (DM) and baryons explain the anomalously low 21cm brightness-temperature minimum at redshift z ~ 17 that was recently measured by the EDGES experiment. In particular, we reassess the validity of the scenario where a small fraction of the total DM is millicharged, focusing on newly derived constraints from Planck 2015 cosmic microwave background (CMB) data. Crucially, the CMB power spectrum is sensitive to DM-baryon scattering if the fraction of interacting DM is larger than (or comparable to) the fractional uncertainty in the baryon energy density. Meanwhile, there is a mass-dependent lower limit on the fraction for which the required interaction to cool the baryons sufficiently is so strong that it drives the interacting-DM temperature to the baryon temperature prior to their decoupling from the CMB. If this occurs as early as recombination, the cooling saturates. We precisely determine the viable parameter space for millicharged DM, and find that only a fraction (m_chi/MeV) 0.0115% <~ f <~ 0.4% of the entire DM content, and only for DM-particle masses between 0.5 MeV - 35 MeV, can be charged at the level needed to marginally explain the anomaly, without violating limits from SLAC, CMB, Big-Bang nucleosynthesis (BBN), or stellar and SN1987A cooling. In reality, though, we demonstrate that at least moderate fine tuning is required to both agree with the measured absorption profile and overcome various astrophysical sources of heating. Finally, we point out that a ~0.4% millicharged DM component which is tightly coupled to the baryons at recombination may resolve the current 2-sigma tension between the BBN and CMB determinations of the baryon energy density. Future CMB-S4 measurements will be able to probe this scenario directly.
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the role of dark-matter astrophysics, to search for signatures of the QCD axion or axion like particles. We illustrate how in the event of a detection the likelihood framework may be used to extract measures of the local dark matter phase-space distribution, accounting for effects such as annual modulation and gravitational focusing, which is the perturbation to the dark matter phase-space distribution by the gravitational field of the Sun. Moreover, we show how potential dark matter substructure, such as cold dark matter streams or a thick dark disk, could impact the signal. For example, we find that when the bulk dark matter halo is detected at 5$sigma$ global significance, the unique time-dependent features imprinted by the dark matter component of the Sagittarius stream, even if only a few percent of the local dark matter density, may be detectable at $sim$2$sigma$ significance. A co-rotating dark disk, with lag speed $sim$50 km$/$s, that is $sim$20$%$ of the local DM density could dominate the signal, while colder but as-of-yet unknown substructure may be even more important. Our likelihood formalism, and the results derived with it, are generally applicable to any time-series based approach to axion direct detection.
We present a possible explanation of the recently observed 511 keV $gamma$-ray anomaly with a new ``millicharged fermion. The new fermion is light (${cal O}({rm MeV})$) but has never been observed by any collider experiments mainly because of its tin y electromagnetic charge $epsilon e$. We show that constraints from its relic density in the Universe and collider experiments allow a parameter range such that the 511 keV cosmic $gamma$-ray emission from the galactic bulge may be due to positron production from this millicharged fermion.
Primordial black holes (PBHs) are one of the most interesting non-particle dark matter (DM) candidates. They may explain all the DM content in the Universe in the mass regime about $10^{-14}M_{odot}-10^{-11}M_{odot}$. We study PBHs as the source of F ast Radio Bursts via magnetic reconnection in the event of collisions between them and neutron stars (NSs) in galaxies. We investigate the energy-loss of PBHs during PBH-NS encounters to model their capture by NSs. To an order-of-magnitude estimation, we conclude that the parameter space of PBHs being all DM is accidentally consistent with that to produce FRBs with a rate which is the order of the observed FRB rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا