ترغب بنشر مسار تعليمي؟ اضغط هنا

The ENUBET Beamline

229   0   0.0 ( 0 )
 نشر من قبل Giulia Brunetti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure $ u_{mu}$ and $ u_{e}$ cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.



قيم البحث

اقرأ أيضاً

The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design and optimization of the hadronic beamline. In this proceeding we present progress on the studies of the proton extraction schemes. We also show a realistic implementation and simulation of the beamline.
137 - N. Muramatsu , Y. Kon , S. Date 2013
A laser-Compton backscattering beam, which we call a `Laser-Electron Photon beam, was upgraded at the LEPS beamline of SPring-8. We accomplished the gains in backscattered photon beam intensities by factors of 1.5--1.8 with the injection of two adjac ent laser beams or a higher power laser beam into the storage ring. The maximum energy of the photon beam was also extended from 2.4 GeV to 2.9 GeV with deep-ultraviolet lasers. The upgraded beams have been utilized for hadron photoproduction experiments at the LEPS beamline. Based on the developed methods, we plan the simultaneous injection of four high power laser beams at the LEPS2 beamline, which has been newly constructed at SPring-8. As a simulation result, we expect an order of magnitude higher intensities close to 10$^7$ sec$^{-1}$ and 10$^6$ sec$^{-1}$ for tagged photons up to 2.4 GeV and 2.9 GeV, respectively.
In July 2013 ICFA established the Neutrino Panel with the mandate To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development a neutrino f actory as a future intense source of neutrinos for particle physics experiments. This, the Panels Initial Report, presents the conclusions drawn by the Panel from three regional Town Meetings that took place between November 2013 and February 2014. After a brief introduction and a short summary of the status of the knowledge of the oscillation parameters, the report summarises the approved programme and identifies opportunities for the development of the field. In its conclusions, the Panel recognises that to maximise the discovery potential of the accelerator-based neutrino-oscillation programme it will be essential to exploit the infrastructures that exist at CERN, FNAL and J-PARC and the expertise and resources that reside in laboratories and institutes around the world. Therefore, in its second year, the Panel will consult with the accelerator-based neutrino-oscillation community and its stakeholders to: develop a road-map for the future accelerator-based neutrino-oscillation programme that exploits the ambitions articulated at CERN, FNAL and J-PARC and includes the programme of measurement and test-beam exposure necessary to ensure the programme is able to realise its potential; develop a proposal for a coordinated Neutrino RD programme, the accelerator and detector R&D programme required to underpin the next generation of experiments; and to explore the opportunities for the international collaboration necessary to realise the Neutrino Factory.
In this paper, we discuss an experimental layout for the two-crystals scenario at the Super Proton Synchrotron (SPS) accelerator. The research focuses on a fixed target setup at the circulating machine in a frame of the Physics Beyond Colliders (PBC) project at CERN. The UA9 experiment at the SPS serves as a testbench for the proof of concept, which is planning to be projected onto the Large Hadron Collider (LHC) scale. The presented in the text configuration was used for the quantitative characterization of the deflected particle beam by a pair of bent silicon crystals. For the first time in the double-crystal configuration, a particle deflection efficiency by the second crystal of $0.188 pm 3 cdot 10^{-5}$ and $0.179 pm 0.013$ was measured on the accelerator by means of the Timepix detector and Beam Loss Monitor (BLM) respectively. In this setup, a wide range angular scan allowed a possibility to textit{in situ} investigate different crystal working regimes (channeling, volume reflection, etc.), and to measure a bent crystal torsion.
Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long , pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا