ﻻ يوجد ملخص باللغة العربية
We revisit Byzantine tolerant reliable broadcast with honest dealer algorithms in multi-hop networks. To tolerate Byzantine faulty nodes arbitrarily spread over the network, previous solutions require a factorial number of messages to be sent over the network if the messages are not authenticated (e.g. digital signatures are not available). We propose modifications that preserve the safety and liveness properties of the original unauthenticated protocols, while highly decreasing their observed message complexity when simulated on several classes of graph topologies, potentially opening to their employment.
In this paper, we consider the Byzantine reliable broadcast problem on authenticated and partially connected networks. The state-of-the-art method to solve this problem consists in combining two algorithms from the literature. Handling asynchrony and
Ensuring reliable communication despite possibly malicious participants is a primary objective in any distributed system or network. In this paper, we investigate the possibility of reliable broadcast in a dynamic network whose topology may evolve wh
In this note, we observe a safety violation in Zyzzyva and a liveness violation in FaB. To demonstrate these issues, we require relatively simple scenarios, involving only four replicas, and one or two view changes. In all of them, the problem is manifested already in the first log slot.
This paper explores the problem good-case latency of Byzantine fault-tolerant broadcast, motivated by the real-world latency and performance of practical state machine replication protocols. The good-case latency measures the time it takes for all no
The Reliable Broadcast concept allows an honest party to send a message to all other parties and to make sure that all honest parties receive this message. In addition, it allows an honest party that received a message to know that all other honest p