ﻻ يوجد ملخص باللغة العربية
Contopoulos 2019 proposed that a dissipation zone develops in the magnetosphere of young pulsars at the edge of the closed-line region beyond the light cylinder. This is necessary in order to supply the charge carriers that will establish current closure through the equatorial and separatrix current-sheets. In the present work, we propose to investigate in greater detail this region with a simplified model that we would like to call the `ring-of-fire. According to this simple model, the dissipation zone is a narrow reconnection layer where electrons and positrons are accelerated inwards and outwards respectively along Speiser orbits that are deflected in the azimuthal direction by the pulsar rotation. After they exit the reconnection layer, the accelerated positrons form the positively charged equatorial current-sheet, and the accelerated electrons form the negatively charged separatrix current-sheet along the boundary of the closed-line region. During their acceleration, particles lose only a small part of their energy to radiation. Most of their energy is lost outside the dissipation region, in the equatorial and separatrix current sheets. Our simple model allows us to obtain high-energy spectra and efficiencies. The radiation emitted by the positrons in the equatorial current-sheet forms a very-high energy tail that extends up to the TeV range.
Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here we report on a broad-band varia
We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smo
Current closure in the pulsar magnetosphere holds the key to its structure. We must determine not only the global electric circuit, but also the source of its electric charge carriers. We address this issue with the minimum number of assumptions: a)
We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistent $e^pm$ pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size $4096times 4096$. This allows us to a
The key properties of the wave propagation theory in the magntosphere of radio pulsars based on the Kravtsov-Orlov equation are presented. It is shown that for radio pulsars with known circular polarization and the swing of the linear polarization po