ﻻ يوجد ملخص باللغة العربية
Given two $2n$--dimensional symplectic ellipsoids whose symplectic sizes satisfy certain inequalities, we show that a certain map from the $n$--torus to the space of symplectic embeddings from one ellipsoid to the other induces an injective map on singular homology with mod $2$ coefficients. The proof uses parametrized moduli spaces of $J$--holomorphic cylinders in completed symplectic cobordisms.
A Kahler-type form is a symplectic form compatible with an integrable complex structure. Let M be a either a torus or a K3-surface equipped with a Kahler-type form. We show that the homology class of any Maslov-zero Lagrangian torus in M has to be no
In this paper we study symplectic embedding questions for the $ell_p$-sum of two discs in ${mathbb R}^4$, when $1 leq p leq infty$. In particular, we compute the symplectic inner and outer radii in these cases, and show how different kinds of embeddi
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified wit
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is
We say that a subset of a symplectic manifold is symplectically (neighbourhood) excisable if its complement is symplectomorphic to the ambient manifold, (through a symplectomorphism that can be chosen to be the identity outside an arbitrarily small n