ترغب بنشر مسار تعليمي؟ اضغط هنا

Composition dependence of magnetoresistance in Fe$_{1-x}$Ni$_{x}$ alloys

148   0   0.0 ( 0 )
 نشر من قبل arXiv Admin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. S. Acharya




اسأل ChatGPT حول البحث

Resistance of Fe$_{1-x}$Ni$_x$(x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.9) has been measured using four probe method from 5K to 300K with and without a longitudinal magnetic field of 8T. The zero field resistivity of x=0.1 and 0.9 alloys, predominant contribution to resistivity above near room temperature is due to electron-phonon scattering, whereas for x=05 and 0.7 alloys electron-magnon scattering is dominant. Alloys with x=0.1 and 0.9 exhibit positive magnetoresistance(MR) from 5K to 300K. For x=0.5 and 0.7 alloys, magnetoresistance changes sign from positive to negative with increase in temperature. The temperature at which sign changes increase with Ni concentration in the alloy. The field dependent magnetoresistance is positive for x=0.1, 0.7 and 0.9 alloys whereas it is negative for x=0.5 alloy. MR follows linear behaviour with field for x=0.1 alloy. MR of all other alloys follow a second order polynomial in field.

قيم البحث

اقرأ أيضاً

143 - S. S. Acharya 2019
This paper reports high resolution X-ray photoelectron spectroscopy (XPS) studies on Fe$_{1-x}$Ni$_x$ (x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9) alloys down to 10 K temperature. Core levels and Auger transitions of the alloys except the invar alloy (x=0.4 ) exhibit no observable temperature induced changes. The invar alloy exhibits changes in the core levels below 20 K temperature that strongly depend on the core level. Such core level dependent changes with temperature were attributed to the precipitation of spin glass like phase below 20 K only in the invar alloy. Ni L$_3$M$_{45}$M$_{45}$ Auger transition also supported such precipitation below 20 K.
141 - S. S. Acharya 2019
In this paper, high Fe-concentration Fe$_{1-x}$Ni$_{x}$ alloys were investigated using high resolution X-ray photoelectron spectroscopy (XPS) down to 10K temperature. The Fe 2s core level exhibits three features, two low binding features correspondin g to exchange interaction between ionized 2s core level and the unpaired 3d electrons. The high binding energy feature corresponds to the screening of 2s core hole by 4s conduction electrons. Our studies suggest high local magnetic moments on Fe sites.
Magnetic susceptibility of the isostructural Ce(Ni{1-x}Cu{x})5 alloys (0< x <0.9) was studied as a function of the hydrostatic pressure up to 2 kbar at fixed temperatures 77.3 and 300 K, using a pendulum-type magnetometer. A pronounced magnitude of t he pressure effect is found to be negative in sign and to depend strongly and non-monotonously on the Cu content, showing a sharp maximum in vicinity of x = 0.4. The experimental results are discussed in terms of the Ce valence change under pressure. It has been concluded that the fractional occupation of the f-states, which corresponds to the half-integer valence of Ce ion (3.5), is favorable for the valence instability in alloys studied. For the reference CeNi5 compound the main contributions to magnetic susceptibility and their volume dependence are calculated ab initio within the local spin density approximation (LSDA), and appeared to be in close agreement with experimental data.
127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
We investigate the ground state properties of Invar alloys via detailed study of the electronic structure of Fe$_{1-x}$Ni$_x$ alloys ($x$ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9) employing $x$-ray photoelectron spectroscopy (XPS). While all the alloys ex hibit soft ferromagnetic behavior with Curie temperature much higher than the room temperature, the results for invar alloy, Fe$_{0.6}$Ni$_{0.4}$ exhibit anomalous behavior. Moreover, the magneto-resistance of the Invar alloy becomes highly negative while the end members possess positive magneto-resistance. The core level spectra of the Invar alloy exhibit emergence of a distinct new feature below 20~K while all other Fe-Ni alloys exhibit no temperature dependence down to 10~K. Interestingly, the shallow core level spectra (3$s$, 3$p$) of Fe and Ni of the Invar alloy reveal stronger deviation at low temperatures compared to the deep core levels (2$s$, 2$p$) indicating crystal field effect. It appears that there is a large precipitation of antiferromagnetic $gamma^prime$ phase below 20 K possessing low magnetic moment (0.5$mu_B$) on Fe within the $alpha$ phase. The discovery of negative magneto-resistance, anomalous magnetization at low temperature and the emergence of unusual new features in the core levels at low temperature provide an evidence of mixed phase in the ground state of Invar alloys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا