ﻻ يوجد ملخص باللغة العربية
This paper considers a cache-aided device-to-device (D2D) system where the users are equipped with cache memories of different size. During low traffic hours, a server places content in the users cache memories, knowing that the files requested by the users during peak traffic hours will have to be delivered by D2D transmissions only. The worst-case D2D delivery load is minimized by jointly designing the uncoded cache placement and linear coded D2D delivery. Next, a novel lower bound on the D2D delivery load with uncoded placement is proposed and used in explicitly characterizing the minimum D2D delivery load (MD2DDL) with uncoded placement for several cases of interest. In particular, having characterized the MD2DDL for equal cache sizes, it is shown that the same delivery load can be achieved in the network with users of unequal cache sizes, provided that the smallest cache size is greater than a certain threshold. The MD2DDL is also characterized in the small cache size regime, the large cache size regime, and the three-user case. Comparisons of the server-based delivery load with the D2D delivery load are provided. Finally, connections and mathematical parallels between cache-aided D2D systems and coded distributed computing (CDC) systems are discussed.
This paper studies device to device (D2D) coded-caching with information theoretic security guarantees. A broadcast network consisting of a server, which has a library of files, and end users equipped with cache memories, is considered. Information t
We address a centralized caching problem with unequal cache sizes. We consider a system with a server of files connected through a shared error-free link to a group of cache-enabled users where one subgroup has a larger cache size than the other. We
In this work, we study coded placement in caching systems where the users have unequal cache sizes and demonstrate its performance advantage. In particular, we propose a caching scheme with coded placement for three-user systems that outperforms the
This paper investigates user cooperation in massive multiple-input multiple-output (MIMO) systems with cascaded precoding. The high-dimensional physical channel in massive MIMO systems can be converted into a low-dimensional effective channel through
In this paper, we consider the coded-caching broadcast network with user cooperation, where a server connects with multiple users and the users can cooperate with each other through a cooperation network. We propose a centralized coded caching scheme